Two female New Zealand white rabbits triethylene glycol by stomach tube. Urine from the dosed animals was subsequently collected for 24 hrs. Rabbits dosed with 200 or 2,000 mg/kg respectively excreted 34.3% or 28% of the dose amount as unchanged triethylene glycol. The urine of one rabbit contained 35.2% of the administered dose as a hydroxyacid form of triethylene glycol.
Triethylene glycol is believed to be metabolized in mammals by alcohol dehydrogenase to acidic products causing metabolic acidosis. Triethylene glycol metabolism by alcohol dehydrogenase can be inhibited by 4-methyl pyrazole or ethanol.
... Eliminated ... possibly as mono- and dicarboxylic acid derivatives or triethylene glycol. In studies with rats, little if any 14-C-oxalate or 14-C-triethylene glycol in conjugated form was found in urine.
Triethylene glycol (TEG) is a liquid higher glycol of very low vapor pressure with uses that are primarily industrial. It has a very low order of acute toxicity by iv, ip, peroral, percutaneous and inhalation (vapor and aerosol) routes of exposure. It does not produce primary skin iritation. Acute eye contact with the liquid causes mild local transient irritation (conjunctival hyperemia and slight chemosis) but does not induce corneal injury. Animal maximization and human volunteer repeated insult patch tests studies have shown that TEG does not cause skin sensitization. A study with Swiss-Webster mice demonstrated that TEG aerosol has properties of a peripheral chemosensory irritant material and caused a depression of breathing rate with an RD(50) of 5140 mg/ cu m. Continuous subchronic peroral dosing of TEG in the diet of rats did not produce any systemic cumulative or long-term toxicity. The effects seen were dose-related increased relative kidney weight, increased urine volume and decreased urine pH, probably a result of the renal excretion of TEG and metabolites following the absorption of large doses of TEG. There was also decreased hemoglobin concentration, decreased hematocrit and increased mean corpuscular volume, probably due to hemodilution following absorption of TEG. The NOAEL was 20,000 ppm TEG in diet. Short-term repeated aerosol exposure studies in the rat demonstrated that, by nose-only exposure, the threshold for effects by respiratory tract exposure was 1036 mg/cu m. Neither high dosage acute nor repeated exposures to TEG produce hepatorenal injury characteristic of that caused by the lower glycol homologues. Elimination studies with acute peroral doses of TEG given to rats and rabbits showed high recoveries (91-98% over 5 days), with the major fraction appearing in urine (84-94%) and only 1% as carbon dioxide. TEG in urine is present in unchanged and oxidized forms, but only negligible amounts as oxalic acid. Developmental toxicity studies with undiluted TEG given by gavage produced maternal toxicity in rats (body weight, food consumption, water consumption, and relative kidney weight) with a NOEL of 1126 mg/kg/day, and mice (relative kidney weight) with a NOEL of 5630 mg/kg/day. Developmental toxicity, expressed as fetotoxicity, had a NOEL of 5630 mg/kg/day with the rat and 563 mg/kg/day with mice. Neither species showed any evidence of embryotoxicity or teratogenicity. There was no evidence for reproductive toxicity with mice given up to 3% TEG in drinking water in a continuous breeding study. TEG did not produce mutagenic or clastogenic effects in the following in vitro genetic toxicology studies: Salmonella typhimurium reverse mutation test, SOS-chromotest in E. coli, CHO forward gene mutation test (HGPRT locus), CHO sister chromatid exchange test, and a chromosome aberration test with CHO cells. The use patterns suggest that exposure to TEG is mainly occupational, with limited exposures by consumers. Exposure is normally by skin and eye contact. Local and systemic adverse health effects by cutaneous exposure are likely not to occur, and eye contact will produce transient irritation without corneal injury. The very low vapor pressure of TEG makes it unlikely that significant vapor exposure will occur. Aerosol exposure is not a usual exposure mode, and acute aerosol exposures are unlikely to be harmful, although a peripheral sensory irritant effect may develop. However, repeated exposures to a TEG aerosol may result in respiratory tract irritation, with cough, shortness of breath and tightness of the chest. Recommended protective and precautionary measures include protective gloves, goggles or safety glasses and mechanical room ventilation. LC(50) data to various fish, aquatic invertebrates and algae, indicate that TEG is essentially nontoxic to aquatic organisms. Also, sustained exposure studies have demonstrated that TEG is of a low order of chronic aquatic toxicity. The bioconcentration potential, environmental hydrolysis, and photolysis rates are low, and soil mobility high. In the atmosphere TEG is degraded by reacting with photochemically produced hydroxyl radicals. These considerations indicate that the potential for ecotoxicological effects with TEG is low.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
暴露途径
该物质可以通过吸入其蒸汽被身体吸收。
The substance can be absorbed into the body by inhalation of its vapour.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
Basic treatment: Establish a patent airway (oropharyngeal or nasopharyngeal airway, if needed). Suction if necessary. Watch for signs of respiratory insufficiency and assist ventilations if necessary. Administer oxygen by nonrebreather mask at 10 to 15 L/min. Monitor for pulmonary edema and treat if necessary ... . Monitor for shock and treat if necessary ... . Anticipate seizures and treat if necessary ... . For eye contamination, flush eyes immediately with water. Irrigate each eye continuously with 0.9% saline (NS) during transport ... . Do not use emetics. For ingestion, rinse mouth and administer 5 ml/kg up to 200 ml of water for dilution if the patient can swallow, has a strong gag reflex, and does not drool. Administer activated charcoal ... . /Ethylene glycol, glycols, and related compounds/
Advanced treatment: Consider orotracheal or nasotracheal intubation for airway control in the patient who is unconscious, has severe pulmonary edema, or is in severe respiratory distress. Positive-pressure ventilation techniques with a bag-valve-mask device may be beneficial. Consider drug therapy for pulmonary edema... . Monitor cardiac rhythm and treat arrhythmias if necessary... . Start IV administration of D5W /SRP: "To keep open", minimal flow rate/. Use 0.9% saline (NS) lactated Ringer's (LR) if signs of hypovolemia are present. For hypotension with signs of hypovolemia, administer fluid cautiously. Consider vasopressors if patient is hypotensive with a normal fluid volume. Watch for signs of fluid overload... . Treat seizures with diazepam or lorazepam... . Use proparacaine hydrochloride to assist eye irrigation... . /Ethylene glycol, glycols, and related compounds/
/SIGNS AND SYMPTOMS/ Splash contamination in man ... causes acute smarting, & this may be followed by transitory disturbance of corneal epithelium with gradually diminishing sensation & signs of irritation, but no persistent injury is to be expected.
Four male albino rats weighing 112 to 145 g were given a single oral dose of 22.5 mg randomly radiolabeled 14-C-triethylene glycol. The rats were then placed in a metabolic chamber in which urine, feces, and expired air were collected over a period of 5 days. The radioactivity recovered (in percent of the administered dose) amounted to 0.8 to 1.2% in expired air, 2.0 to 5.3% in feces, and 86.1 to 94.0% in urine. The total recovery of radioactivity was 90.6% to 98.3% of the administered dose.
Following oral dosing, the rat and rabbit excreted most of the triethylene glycol in both unchanged and/or oxidized forms (mono- and dicarboxylic acid derivatives of triethylene glycol). In rabbits dosed with 200 or 2000 mg/kg triethylene glycol respectively excreted 34.3% or 28%, of the administered dose in the urine as unchanged triethylene glycol and 35.2% as a hydroxyacid form of this chemical. In the studies with rats, little if any 14-C-oxalate or 14-C-triethylene glycol in conjugated form was found in the urine. Trace amounts of orally administered 14-C triethylene glycol were excreted in expired air as carbon dioxide (<1%) and in detectable amounts in feces (2 to 5 %). The total elimination of radioactivity (urine, feces and CO2) during the five day period following an oral dose of labeled compound (22.5 mg) ranged from 91 to 98%. The majority of the radioactivity appeared in the urine.
No studies have been reported dealing with the skin absorption of triethylene glycol. Although it is possible that under conditions of very severe prolonged exposures to this chemical, absorption through the skin can occur, it is doubtful any appreciable systemic/dermal injury would occur because triethylene glycol has (1) a low order of dermal irritancy, (2) is not a dermal sensitizer, and (3) showed no evidence of dermal or systemic toxicity following repeated dermal applications of 2 mL (approximately 600 mg/kg) triethylene glycol applied to the skin of rabbits in a 21-day dermal toxicity study.
[EN] TARGETED DELIVERY AND PRODRUG DESIGNS FOR PLATINUM-ACRIDINE ANTI-CANCER COMPOUNDS AND METHODS THEREOF<br/>[FR] ADMINISTRATION CIBLÉE ET CONCEPTIONS DE PROMÉDICAMENTS POUR COMPOSÉS ANTICANCÉREUX À BASE DE PLATINE ET D'ACRIDINE ET MÉTHODES ASSOCIÉES
申请人:WAKE FOREST SCHOOL OF MEDICINE
公开号:WO2013033430A1
公开(公告)日:2013-03-07
Acridine containing cispiaiin compounds have been disclosed that show greater efficacy against cancer than other cisplatin compounds. Methods of delivery of those more effective eisp!aiin compounds to the nucleus in cancer ceils is disclosed using one or more amino acids, one or more sugars, one or more polymeric ethers, C i^aikylene-phenyl-NH-C(0)-R.15, folic acid, av03 iniegriii RGD binding peptide, tamoxifen, endoxifen, epidermal growth factor receptor, antibody conjugates, kinase inhibitors, diazoles, triazol.es, oxazoies, erlotinib, and/or mixtures thereof; wherein R]§ is a peptide.
[EN] SUBSTITUTED QUINAZOLINES AS FUNGICIDES<br/>[FR] QUINAZOLINES SUBSTITUÉES, UTILISÉES EN TANT QUE FONGICIDES
申请人:SYNGENTA PARTICIPATIONS AG
公开号:WO2010136475A1
公开(公告)日:2010-12-02
The present invention relates to a compound of formula (I) wherein wherein the substituents have the definitions as defined in claim 1or a salt or a N-oxide thereof, their use and methods for the control and/or prevention of microbial infection, particularly fungal infection, in plants and to processes for the preparation of these compounds.
Compounds of the formula (I) wherein the substituents are as defined in claim 1, useful as a pesticides, especially fungicides.
式(I)的化合物,其中取代基如权利要求1所定义,作为杀虫剂特别是杀菌剂有用。
Thieno-pyrimidine compounds having fungicidal activity
申请人:Brewster Kirkland William
公开号:US20070093498A1
公开(公告)日:2007-04-26
The present invention relates to thieno[2,3-d]-pyrimidine compounds having fungicidal activity.
本发明涉及具有杀真菌活性的噻吩[2,3-d]-嘧啶化合物。
METHOD FOR PRODUCING CIS- AND TRANS-ENRICHED MDACH
申请人:BASF SE
公开号:US20170260115A1
公开(公告)日:2017-09-14
A process for preparing trans-enriched MDACH, including: distilling an MDACH starting mixture in the presence of an auxiliary, which is an organic compound having a molar mass of 62 to 500 g/mol, a boiling point at least 5° C. above the boiling point of cis,cis-2,6-diamino-1-methylcyclohexane, and 2 to 4 functional groups, each of which is independently an alcohol group or a primary, secondary or tertiary amino group. The MDACH starting mixture includes 0 to 100% by weight of 2,4-MDACH and 0 to 100% by weight of 2,6-MDACH, based on the total amount of MDACH present in the MDACH starting mixture. The MDACH starting mixture includes both trans and cis isomers. Trans-enriched MDACH includes 0 to 100% by weight of 2,4-MDACH and 0 to 100% by weight of 2,6-MDACH, where the proportion of trans isomers in the mixture is higher than the proportion of trans isomers in the MDACH starting mixture.