A bacterium capable of utilizing citronellal or citral as the sole source of carbon and energy has been isolated from soil by the enrichment culture technique. It metabolizes citronellal to citronellic acid (65%), citronellol (0.6%), dihydrocitronellol (0.6%), menthol (0.75%), and 3,7-dimethyl-1,7-octane diol (1.7%). The metabolites of citral were geranic acid (62%), 6-methyl-5-heptanoic acid (0.5%), 3-methyl-2-butenoic acid (1%), and 1-hydroxy-3, 7-dimethyl-6-octen-2-one (0.75%).
The cytochrome p450-catalyzed formation of olefinic products from a series of xenobiotic aldehydes has been demonstrated. Citronellal, a beta-branched aldehyde, was found to undergo the oxidative deformylation reaction to yield 2,6-dimethyl-1,5-heptadiene but only with p450 2B4.
Feeding 50 g citronellal to rabbits followed by isolation of 13 g of a cysralline glucoronide, which proved to be p-menthane-3,8-diol-D-glucoronide. The citronellal appeared to have been /nonenzymatically/ cyclized and the glucoronide obtained was identical with that obtaind on feeding p-menthane-3,8-diol (menthoglycol).
Citronellal was transformed by Solanum aviculare suspension cultures to menthane-3,8-diols. cis-Menthane-3,8-diol dominated over the trans-isomer (39% and 15%, respectively). Absolute configurations of menthane-3,8-diols were assigned by critical analysis of 1H and 19F NMR spectra of prepared esters with 2-methoxy-2-phenyl-3,3,3-trifluoropropanoic acid. Citronellol and isopulegol were other products of the transformation (23% and 17%, respectively). The reaction course was identical for both citronellal enantiomers.
IDENTIFICATION AND USE: Citronellal is a colorless to slightly yellow liquid with an intense lemon odor. It is used as a flavoring agent and insect repellant. It has been tested as a medication. HUMAN EXPOSURE AND TOXICITY: A maximization test was carried out on 25 volunteers. The material was tested at a concentration of 4% in petrolatum and produced no sensitization reactions. Three cases of eczematous contact-type hypersensitivity to oils of citronella have been recorded. In two instances detailed patch-test studies were made with the ingredients of oil of citronella and some related substances. The essential allergen in oil of citronella was reported to be citronellal. ANIMAL STUDIES: Citronellal applied full strength to intact or abraded rabbit skin for 24 hr under occlusion was moderately irritating. Citronellal injected into white leghorn embryos caused dose-dependent teratogenesis. Morphological malformation occurred mainly in the craniofacial area. Citronellal produced antinociceptive effects in mice and was a strong skin sensitizer in guinea pigs. Mutagenicity was evaluated by the Salmonella/microsome assay (TA97a, TA98, TA100 and TA102 tester strains), without and with metabolic activation. Citronellal was not mutagenic in this test. ECOTOXICITY STUDIES: Citronellal inhibited embryonic development of yellow fever mosquito A aegypti eggs deposited on water. Citronellal causes a severe phytotoxicity on weeds.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
副作用
皮肤致敏剂 - 一种可以诱导皮肤产生过敏反应的制剂。
Skin Sensitizer - An agent that can induce an allergic reaction in the skin.
来源:Haz-Map, Information on Hazardous Chemicals and Occupational Diseases
Citronellal is a monoterpene present in the oil of many species, including Cymbopogon winterianus Jowitt (Poaceae). The present study investigated the effect of citronellal on inflammatory nociception induced by different stimuli and examined the involvement of the NO-cGMP-ATP-sensitive K+ channel pathway. This study used male Swiss mice (n=6 per group) that were treated intraperitoneally with citronellal(25, 50 or 100 mg/kg) 0.5 hr after the subplantar injection of 20 uL of carrageenan (CG; 30 ug/paw), tumor necrosis factor-alpha (TNF-a; 100 pg/paw), prostaglandin E2 (PGE2; 100 ng/paw) or dopamine (DA; 30 ug/paw). The mechanical nociception was evaluated at 0.5, 1, 2 and 3 hr after the injection of the agents, using a digital analgesimeter (von Frey). The effects of citronellal were also evaluated in the presence of L-NAME (30 mg/kg) or glibenclamide (5 mg/kg). At all times, citronellal in all doses inhibited the development of mechanical nociception induced by CG (p<0.001 and p<0.01) and TNF-a (p<0.001, p<0.01, and p<0.05). The citronellal was able to increase the pain threshold in the DA test (p<0.001, p<0.01, and p<0.05) and in the PGE2 test at all times (p<0.001 and p<0.05). L-NAME and glibenclamide reversed the antinociceptive effects of the citronellal at higher doses in the PGE2 test. These data suggest that citronellal attenuated mechanical nociception, mediated in part by the NO-cGMP-ATP-sensitive K+ channel pathway.
Complementary and alternative medicines can be applied concomitantly with conventional medicines; however, little drug information is available on these interactions. Previously, we reported on the inhibitory effects of an extract and monoterpenoids (e.g., (R)-(+)-citronellal) contained in citrus herbs on P-glycoprotein (P-gp) using P-gp-overexpressed LLC-PK1 cells. The objective of the present study was to investigate the effects of (R)-(+)-citronellal on P-gp-mediated transport in the intestinal absorption process in vitro and in vivo. Transcellular transport of [(3)H]digoxin across Caco-2 cell monolayers was measured in the presence or absence of (R)-(+)-citronellal. (R)-(+)-citronellal reduced the basolateral-to-apical transport and efflux ratio for [(3)H]digoxin significantly. Serum concentration-time profiles and pharmacokinetic parameters of digoxin after intravenous and oral administration were analyzed in rats pretreated with oral (R)-(+)-citronellal. The bioavailability of digoxin after oral administration decreased significantly to 75.8% of that after intravenous administration at the same dose. (R)-(+)-citronellal increased the bioavailability of oral digoxin to 99.9% but had no effects on total body clearance, volume of distribution, or elimination rate. These findings suggest that (R)-(+)-citronellal can increase the bioavailability of oral digoxin based on the blockade of P-gp-mediated efflux of digoxin from intestinal epithelia to the lumen in the absorption process.
/SRP:/ Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand-valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR as necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. /Aldehydes and Related Compounds/
range of aldehydes with simple primary alcohols to give esters together with alcohols formed by reduction of the aldehydes. The proportion of ester can be increased by adding an efficient hydrogen acceptor. The reaction can also be used to produce 5- and 7-membered lactones from aromatic dialdehydes. Propan-2-ol and the in situ catalyst reduce some aromatic aldehydes to the corresponding alcohols without
RhH(CO)PPh 3)3和由RhCl 3 ·3H 2 O,PPh 3和Na 2 CO 3原位制得的催化剂均催化多种醛与简单的伯醇反应生成酯以及由醛的还原。可以通过添加有效的氢受体来增加酯的比例。该反应也可用于由芳族二醛生产5元和7元内酯。丙-2-醇和原位催化剂可将一些芳香醛还原为相应的醇,而不会形成酯。
[EN] ENCAPSULATES<br/>[FR] PRODUITS ENCAPSULÉS
申请人:PROCTER & GAMBLE
公开号:WO2013022949A1
公开(公告)日:2013-02-14
The present application relates to encapsulates, compositions, products comprising such encapsulates, and processes for making and using such encapsulates. Such encapsulates comprise a core comprising a perfume and a shell that encapsulates said core, such encapsulates may optionally comprise a parametric balancing agent, such shell comprising one or more azobenzene moieties.
Highly chemoselective palladium-catalyzed conjugate reduction of .alpha.,.beta.-unsaturated carbonyl compounds with silicon hydrides and zinc chloride cocatalyst
作者:Ehud. Keinan、Noam. Greenspoon
DOI:10.1021/ja00283a029
日期:1986.11
experiments and 'H NMR studies, a catalytic cycle is postulated in which the first step involves reversible coordination of the palladium complex to the electron-deficient olefin and oxidative addition of silicon hydride to form a hydridopalladium olefin complex. Migratory insertion of hydride into the coordinated olefin produces an intermediate palladium enolate which, via reductive elimination, collapses back
由可溶性钯催化剂、氢化硅烷和氯化锌组成的三组分体系能够有效地共轭还原α、不饱和酮和醛。最佳条件组包括二苯基硅烷作为最有效的氢化物供体,任何可溶于 0 或 I1 氧化态的钯配合物,当它被膦配体稳定时,以及作为最佳路易斯酸助催化剂的 ZnCl。该反应对于范围广泛的不饱和酮和醛非常普遍,并且对于这些迈克尔受体具有高度选择性,因为在这些条件下α,-不饱和羧酸衍生物的还原非常缓慢。当双氘代二苯基硅烷用于还原不饱和酮时,氘在底物的受阻较少的面上立体选择性地引入,并在 8 位上以区域选择性的方式引入。相反,当在痕量 D2O 存在下进行还原时,氘掺入发生在 a 位。在掺入氘的实验和 1 H NMR 研究的基础上,假定催化循环,其中第一步涉及钯配合物与缺电子烯烃的可逆配位和氢化硅的氧化加成以形成氢化钯烯烃配合物。氢化物迁移插入配位的烯烃产生中间体烯醇钯,通过还原消除,它塌缩回 Pd(0) 络合物和甲硅烷基烯
Organo tin nucleophiles IV. Palladium catalyzed conjugate reduction with tin hydride
作者:Ehud Keinan、Pierre A Gleize
DOI:10.1016/s0040-4039(00)86866-5
日期:——
Highly chemoselective conjugatereduction of α,β-unsaturated carbonyl compounds is now possible by using tributyl tin hydride with Pd(PØ3)4; an optimization study puts forth the importance of added radical scavenger and proton source in these reductions.
Stereoselective Hydrosilylation of Enals and Enones Catalysed by Palladium Nanoparticles
作者:Meryem Benohoud、Sakari Tuokko、Petri M. Pihko
DOI:10.1002/chem.201100655
日期:2011.7.18
A highly versatile and efficient hydrosilylation method by palladium nanoparticle catalysis allows the direct and chemoselective synthesis of 1) enolsilanes of high isomeric purity, 2) saturated aldehydes or ketones, or 3) the corresponding saturated acetals from α,β‐unsaturated aldehydes or ketones. The choice of the product is determined by simply switching the solvent from THF to mixtures of THF/water