Quinones (ie, 6,12-dione) have been shown to undergo oxidation-reduction cycles involving quinone, hydroquinone, and molecular oxygen, resulting in the formation of oxygen radicals and semiquinone radicals. /Quinones/
Anthraquinone (labelled with 14C in the 9,10-positions) was administered orally in a dose of 5 mg/kg bw to male rats and the urine and the feces of the animals were collected until 48 hr after administration: the elimination ratio (renal: fecal) amounted to about 1:1.6. The main elimination product in feces, anthraquinone amounted to minimum 40% of the totally recovered radioactivity (in the excreta and the carcass 48 hr after administration), non conjugated 2-hydroxy-anthraquinone as a minor fecal metabolite was found in approximately 4%. Urine contained as main biotransformation product (approximately 20% of the totally recovered radioactivity) conjugated 2-hydroxy-anthraquinone, unchanged anthraquinone amounted to about 1% in the urine.
In a study of the metabolism of anthraquinone, rats were maintained for 4 days on a diet containing 5% of anthraquinone, the urines being collected daily. The following urinary metabolites were detectable: 2-hydroxyanthraquinone and its sulphuric ester, conjugates of 9-hydroxy-, 9,10-dihydroxy- and 2,9,10-thrihydroxyanthracene and anthrone.
A metabolism study was conducted using male Fischer 344 rats in which they were fed formulations of 4 lots of anthraquinone, produced by three different synthetic routes, with concentrations of 938, 3750 and 7500 ppm and a control diet containing no anthraquinone in irradiated NTP 2000 feed for seven consecutive days. One of the lots had been previously used to conduct subchronic and chronic rodent toxicity studies in feed. Ten animals were used per group. The formulations were prepared using anthraquinone with particle sizes smaller than 80 mesh and consistent in distribution for each lot. All animals were placed in individual metabolism cages following dosing and urine was collected for 24 hours. The urine of all animals from each group was pooled. The purpose of this study was to evaluate any difference in absorption and metabolism of the anthraquinone. A high performance liquid chromatographic method with ultraviolet absorbance detection (HPLC/UV) was developed to analyze the urine samples for 1- and 2-hydroxyanthraquinone, metabolites of anthraquinone. The method consisted of extracting 2 mL of urine with three 2-mL aliquots of ethyl acetate, combining them, evaporating, and reconstituting in 25% water:75% acetonitrile. The reconstituted extracts were analyzed using a C18 reverse-phase column, a mobile phase starting at 75% water:25% acetonitrile, remaining there for 5 minutes and then going to 25%water:75% acetonitrile over 20 minutes with a linear gradient, and a detection wavelength of 260 nm. This method was validated and found to have acceptable linearity, specificity, sensitivity, accuracy, precision, recovery, and ruggedness. Analysis of the samples found that the metabolic profiles and concentrations were consistent for each source of anthraquinone at a given dose level. 1- and 2-hydroxyanthraquinone and anthraquinone were found in all samples from the dosed animals. Within a given sample the concentrations of 2-hydroanthraquinone and anthraquinone were similar and the concentration of 1-hydroxyanthraquinone was approximately 2% of the other two.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
致癌物分类
国际癌症研究机构致癌物:蒽醌
IARC Carcinogenic Agent:Anthraquinone
来源:International Agency for Research on Cancer (IARC)
毒理性
致癌物分类
国际癌症研究机构(IARC)致癌物分类:2B组:可能对人类致癌
IARC Carcinogenic Classes:Group 2B: Possibly carcinogenic to humans
来源:International Agency for Research on Cancer (IARC)
毒理性
致癌物分类
国际癌症研究机构专著:第101卷:(2012年)工业和消费品、食品和饮用水中存在的一些化学品
IARC Monographs:Volume 101: (2012) Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-water
来源:International Agency for Research on Cancer (IARC)
毒理性
吸入症状
咳嗽。
Cough.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
毒理性
眼睛症状
疼痛。红肿。
Pain. Redness.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
Following a single oral administration of anthraquinone (labelled with 14C in the 9,10-positions) at dose levels of 0.1, 1.0, 3.0 mg/kg bw (male rats) or of 1.0 mg/kg bw (females rats), the radioactivity resulting from anthraquinone was nearly completely absorbed, the absorption commencing after a short lag period of about 2-3 minutes. After dosing male or female rats with 1.0 mg/kg bw, the absorption could not be described by a unique half-life. Following administration of 0.1 mg/kg bw to males, the absorption period was best characterized by a half-life of roughly 40 minutes, the maximum plasma level of P=0.75 was reached after 2.5 hr. Following oral administration of 1.0 mg/kg bw to males of females, the plasma concentration peaked after 5 hr (P=0.46) and 12 hr (P=0.43), respectively. The radioactivity was slowly eliminated form the body: 2 days after oral intubation on average about 5% of the administered dose could be measured in the body excluding the GI tract, within 2 days after oral administration <0.01% of the recovered radioactivity were excreted with the expired air. Within the test interval of 2 days about 95% of the retrieved radioactivity were excreted with urine and feces after oral administration, the ratio of the amounts excreted via both routes was about 1.6 (feces:urine). At sacrifice of the male rats 48 hr after administration of 1.0 mg/kg bw, a relative concentration of P=0.052 was determined in the body excluding the GI tract. In the kidney and in the liver these values were about 7 times higher and in the brain they were about 10 times lower as compared with the sum of all organs tissues. At sacrifice of the females a relative concentration of P=0.063 was determined in the body excluding the GI tract and in the kidney and in the liver these vales were about 8 times higher and in the fat and in the brain the relative concentrations were 4 times and 8 times, respectively, lower (results representing the sum of the unchanged substance and its labelled metabolites. P=relative concentration=activity measured/grams of plasma: activity administered/grams of bw).
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在动物中,消除是快速的;几乎有96%在48小时内通过尿液和粪便排出。
/In animals/ elimination is quick; almost 96% is excreted within 48 hr in the urine and feces.
A thioxanthone ring system derivative compound is provided. The thioxanthone ring system derivative compound is represented by a formula (I):
wherein X is a substituent being one selected from a group consisting of halogens, wherein R
1
is a substituent being one selected from a group consisting of sulfur and sulfur dioxide, wherein R
2
is a substituent being one selected from a group consisting of C
1
˜C
10
alkyl group, C
3
˜C
10
branched alkyl group, C
3
˜C
10
cyclic alkyl group, phenyl group, phenyl alkyl group, and wherein hydrogen of phenyl group can be partially substituted by halogens, alkoxyl group, C
1
˜C
10
alkyl group, nitro group or amine group.
Compounds of the formula (I) wherein the substituents are as defined in claim 1, useful as a pesticides, especially fungicides.
式(I)的化合物,其中取代基如权利要求1所定义,作为杀虫剂特别是杀菌剂有用。
[EN] INSECTICIDAL TRIAZINONE DERIVATIVES<br/>[FR] DÉRIVÉS DE TRIAZINONE INSECTICIDES
申请人:SYNGENTA PARTICIPATIONS AG
公开号:WO2013079350A1
公开(公告)日:2013-06-06
Compounds of the formula (I) or (I'), wherein the substituents are as defined in claim 1, are useful as pesticides.
式(I)或(I')的化合物,其中取代基如权利要求1所定义的那样,可用作杀虫剂。
Ru(II)-Catalyzed Selective C–H Amination of Xanthones and Chromones with Sulfonyl Azides: Synthesis and Anticancer Evaluation
作者:Youngmi Shin、Sangil Han、Umasankar De、Jihye Park、Satyasheel Sharma、Neeraj Kumar Mishra、Eui-Kyung Lee、Youngil Lee、Hyung Sik Kim、In Su Kim
DOI:10.1021/jo501709f
日期:2014.10.3
ruthenium-catalyzed selective amination of xanthones and chromones C–H bonds with sulfonyl azides is described. The reactions proceed efficiently with a broad range of substrates with excellent functional group compatibility. This protocol provides direct access to 1-aminoxanthones, 5-aminochromones, and 5-aminoflavonoid derivatives known to exhibit potent anticancer activity.
Photoreactive Composition, Reaction Product, and Method of Producing Reaction Product
申请人:Tokyo University of Science Foundation
公开号:US20210253826A1
公开(公告)日:2021-08-19
A photoreactive composition including a base-reactive compound, a photobase generator that is represented by the following Formula (1) and that generates a base when irradiated with light, and at least one compound selected from the group consisting of a polycyclic aromatic compound having a fused ring structure having two or more rings and a polycyclic aromatic compound having three or more aromatic rings and having a conjugated structure including any two or more of the three or more aromatic rings, in which the base-reactive compound is a compound having two or more groups that will have their polarity converted by the action of a base and that exhibit reactivity, in one molecule, or a compound having two or more groups that will react under the action of a base, in one molecule.