摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,2-二氯乙烷 | 107-06-2

中文名称
1,2-二氯乙烷
中文别名
二氯乙烷;对称二氯乙烷;α,β-二氯乙烷;邻二氯乙烷;1,2-二氯化乙烯;氟利昂150;二氯化乙烯;二氯乙烷(EDC)
英文名称
1,2-dichloro-ethane
英文别名
dichloroethane;ethylene dichloride;DCE;1,2-DCE;EDC;1,2-Dichloroethane
1,2-二氯乙烷化学式
CAS
107-06-2
化学式
C2H4Cl2
mdl
MFCD00000963
分子量
98.9598
InChiKey
WSLDOOZREJYCGB-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    -35 °C (lit.)
  • 沸点:
    83 °C (lit.)
  • 密度:
    1.256 g/mL at 25 °C (lit.)
  • 蒸气密度:
    3.4 (20 °C, vs air)
  • 闪点:
    60 °F
  • 溶解度:
    7.9g/l
  • 介电常数:
    10.7(20℃)
  • 暴露限值:
    TLV-TWA 10 ppm (~40 mg/m3) (ACGIH), 1 ppm (NIOSH), 50 ppm (MSHA and OSHA); ceiling 2 ppm/15 min (NIOSH); carcinogenicity: Animal Sufficient Evidence, Human Limited Evidence (IARC).
  • LogP:
    1.45 at 20℃
  • 物理描述:
    Ethylene dichloride appears as a clear colorless liquid with a chloroform-like odor. Flash point 56°F. Denser than water and insoluble in water. Vapors are heavier than air. Density 10.4 lb / gal.
  • 颜色/状态:
    Heavy liquid
  • 气味:
    Pleasant, chloroform-like
  • 味道:
    Sweet taste
  • 蒸汽密度:
    3.4 (NTP, 1992) (Relative to Air)
  • 蒸汽压力:
    78.9 mm Hg at 25 °C
  • 水溶性:
    -1.06
  • 亨利常数:
    Henry's Law constant = 1.18X10-3 atm-cu m/mole at 25 °C
  • 大气OH速率常数:
    2.48e-13 cm3/molecule*sec
  • 稳定性/保质期:
    Stable under recommended storage conditions.
  • 自燃温度:
    775 °F (413 °C)
  • 分解:
    Decomposes to vinyl chloride and HCl anove 600 °C.
  • 粘度:
    0.84 cP at 20 °C
  • 腐蚀性:
    Corrodes iron and other metals at elevated temperatures when in contact with water.
  • 燃烧热:
    12.57 kJ/g
  • 汽化热:
    138 Btu/lb = 76.4 cal/g = 3.2X10+5 J/kg
  • 表面张力:
    32.2 dynes/cm = 0.0322 N/m at 20 °C
  • 电离电位:
    11.05 eV
  • 气味阈值:
    Odor Threshold Low: 6.0 [mmHg]; Odor Threshold High: 111.0 [mmHg]; Detection odor threshold from AIHA (mean = 26 ppm)
  • 折光率:
    Index of refraction: 1.4422 at 25 °C/D
  • 保留指数:
    620 ;628.6 ;660 ;644.8 ;645.4 ;647.7 ;648.2 ;650.1 ;654 ;656.2 ;629 ;632 ;630 ;632 ;633 ;638 ;641 ;645 ;640 ;621 ;606 ;607 ;610 ;632 ;623.7 ;632 ;632 ;632 ;627 ;628.9 ;626.6 ;633 ;630 ;632 ;632 ;630 ;631 ;631.4 ;632 ;631 ;623

计算性质

  • 辛醇/水分配系数(LogP):
    1.5
  • 重原子数:
    4
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

代谢
在大鼠中,放射性标记的1,2-二氯乙烷主要通过尿液排出,主要的尿代谢物是氯乙酸、5-羧甲基半胱氨酸和硫代二乙酸。
In rats, radiolabeled ethylene dichloride was excreted primarily in the urine, and the major urinary metabolites were chloroacetic acid, 5-carboxymethyl cysteine, and thiodiacetic acid.
来源:Hazardous Substances Data Bank (HSDB)
代谢
对C57BL雌性小鼠进行了(14)C标记的1,2-二氯乙烷的代谢和结合研究。通过静脉注射小鼠的全身体层放射自显影显示,非挥发性及结合态的1,2-二氯乙烷代谢物在鼻腔嗅黏膜和气管支气管上皮中发生了选择性定位。在上消化道、阴道、眼睑的上皮以及肝脏和肾脏中也存在低水平的代谢物。用美托拉宗预处理后观察到黏膜和上皮结合减少,表明这种结合可能是由于1,2-二氯乙烷的氧化代谢。与等摩尔剂量的(14)C标记的1,2-二溴乙烷注射的小鼠相比,1,2-二氯乙烷腹腔注射的小鼠体内结合水平显著较低。用各种组织的1000 g上清液进行体外实验表明,鼻黏膜具有很强的将1,2-二氯乙烷激活为与组织不可逆结合的产物的能力。鼻腔嗅黏膜是1,2-二氯乙烷毒性的靶组织。
The metabolism and binding of (14)C-labelled 1,2-dichloroethane in female C57BL mice were studied. As shown by whole-body autoradiography of iv injected mice, a selective localization of non-volatile and bound 1,2-dichloroethane metabolites occurred in the nasal olfactory mucosa and the tracheo-bronchial epithelium. Low levels of metabolites were also present in the epithelia of the upper alimentary tract, vagina and eyelid, and in the liver and kidney. A decreased mucosal and epithelial binding was observed after pretreatment with metyrapone, indicating that the binding might be due to an oxidative metab of 1,2-dichloroethane. The levels of in vivo binding were considerably lower in mice injected ip with 1,2-dichloroethane as compared to mice given equimolar doses of (14)C-labelled 1,2-dibromoethane. In vitro experiments with 1000 g supernatants from various tissues showed that nasal mucosa has a marked ability to activate 1,2-dichloroethane into products that become irreversibly bound to the tissue. The nasal olfactory mucosa is a target tissue for toxicity of 1,2-dichloroethane.
来源:Hazardous Substances Data Bank (HSDB)
代谢
使用隔离的大鼠肝细胞作为模型系统,并结合电子自旋共振光谱与自旋捕捉技术作为检测手段,证明了在常氧和低氧条件下,从四氯化碳(CCl4)、氯仿(CHCl3)、1,1,1-四氯乙烷和1,1,2,2-四氯乙烷形成自由基衍生物。相比之下,只有在低氧条件下,当向肝细胞悬浮液中添加1,2-二溴乙烷、1,1-二氯乙烷、1,2-二氯乙烷和1,1,2-三氯乙烷时,才能检测到自由基的产生。
... Using isolated rat hepatocytes as a model system, and electron spin resonance spectroscopy coupled to the spin trapping technique as a detection technique, the formation of free radical derivatives was demonstrated, both under normoxic as well as under hypoxic conditions from carbon tetrachloride (CCl4), chloroform (CHCl3), 1,1,1-tetrachloroethane, and 1,1,2,2-tetrachloroethane. In contrast, free radical production was only detectable under hypoxic conditions when 1,2-dibromoethane, 1,1-dichloroethane, 1,2-dichloroethane, and 1,1,2-trichloroethane were added to the hepatocyte suspensions....
来源:Hazardous Substances Data Bank (HSDB)
代谢
在生物分析中发现对B6C3F1小鼠和Osborne-Mendel大鼠均有致癌性的氯化烃类化合物(1,2-二氯乙烷),仅对小鼠致癌的(1,1,2-三氯乙烷,1,1,2,2-四氯乙烷,六氯乙烷,三氯乙烯和四氯乙烯),以及对两种动物均无致癌性的(1,1-二氯乙烷和1,1,1-三氯乙烷)被用来研究肿瘤发生的生化基础。在成年小鼠和大鼠经口长期给药后,进行了最大耐受剂量(MTD)和1/4 MTD的每种化合物的实验研究。检查了48小时内化合物的代谢程度、肝蛋白结合以及尿液代谢物模式。化合物代谢(每千克体重的毫摩尔数)在小鼠中比大鼠高1.7至10倍。除了1,2-二氯乙烷和1,1,1-三氯乙烷外,肝蛋白结合(每毫克肝蛋白结合的纳摩尔当量)在小鼠中比大鼠高1.2至8.3倍。非致癌物1,1-二氯乙烷和1,1,1-三氯乙烷在小鼠中的结合量比致癌物1,2-二氯乙烷和1,1,2-三氯乙烷高2至18倍。化合物的尿液代谢物模式在两种动物中相似。所测量的生化参数未能提供区分致癌物和非致癌物的线索。
Chlorinated hydrocarbons found in a bioassay to be carcinogenic to both B6C3F1 mice and Osborne-Mendel rats (1,2-dichloroethane), carcinogenic only to mice (1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane, hexachloroethane, trichloroethylene, and tetrachloroethylene), and noncarcinogenic to either species (1,1-dichloroethane and 1,1,1-trichloroethane) were used to investigate the biochemical bases for tumorigenesis. Studies were conducted after chronic oral dosing of adult mice and rats with the MTD and 1/4 MTD of each compound. The extent to which the compounds were metabolized in 48 hr, hepatic protein binding, and urinary metabolite patterns were examined. Metabolism of the compounds (mmoles per kg body weight) was 1.7 to 10 times greater in mice than in rats. Hepatic protein binding (nanomole equivalents bound to 1 mg of liver protein) was 1.2 to 8.3 times higher in mice than in rats except for 1,2-dichloroethane and 1,1,1-trichloroethane. The noncarcinogens 1,1-dichloroethane and 1,1,1-trichloroethane exhibited 2 to 18 times more binding in mice than did the carcinogens 1,2-dichloroethane and 1,1,2-trichloroethane. Urinary metabolite patterns of the compounds were similar in both species. The biochemical parameters measured provided no clue to differentiate the carcinogens from the noncarcinogens.
来源:Hazardous Substances Data Bank (HSDB)
代谢
由于其物理性质,如亲脂性,1,2-二氯乙烷很可能会通过被动扩散被肺泡膜、胃肠道的粘膜膜和皮肤吸收。一旦进入体内,它会在全身广泛分布,在亲脂性较高的组织中积累最多。生物转化的主要途径涉及与谷胱甘肽结合,产生非挥发性尿液代谢物。另一条途径是通过细胞色素P-450介导的氧化反应,负责氯乙醛的形成。代谢饱和似乎在口服(灌胃)给药后比吸入暴露后更快发生。吸入或口服暴露后,1,2-二氯乙烷的消除主要是通过尿液排出可溶性代谢物,以及通过呼出气体排出未改变的母化合物和二氧化碳。(L156)
Due to its physical properties such as its lipophilicity, 1,2-dichloroethane is likely to be absorbed across the alveolar membranes of the lung, mucosal membranes of the gastrointestinal tract, and the skin by passive diffusion. Once in the body, it is widely distributed, with the greatest amounts accumulating in the more lipophilic tissues. The primary route of biotransformation involves conjugation with glutathione to yield nonvolatile urinary metabolites. The other route, a cytocrome P-450-mediated oxidation is responsible for the formation of chloroacetaldehyde. Metabolic saturation appears to occur sooner after oral (gavage) administration than after inhalation exposure. Following inhalation or oral exposure, elimination of 1,2-dichloroethane occurs primarily via excretion of soluble metabolites in the urine and excretion of unchanged parent compound and carbon dioxide in the expired air. (L156)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
识别和使用:1,2-二氯乙烷是一种无色、油性液体。它用于生产氯乙烯、三氯乙烯、偏二氯乙烯和三氯乙烷。它还用作抗爆汽油中的铅清除剂、油漆、清漆和除漆剂、金属去脂、肥皂和清洁化合物、湿润和渗透剂、矿石浮选以及作为溶剂。人类研究:人类通过吸入或摄入意外急性暴露于1,2-二氯乙烷后,出现了各种效应,包括对中枢神经系统、肝脏、肾脏、肺和心血管系统的影响。急性口服暴露于1,2-二氯乙烷后死亡的个体表现出的呼吸系统效应包括充血、肺水肿(在570 mg/kg/天的剂量下)和支气管炎。摄入量大于或等于570 mg/kg/天的1,2-二氯乙烷导致了严重的肝细胞损伤、肝脏萎缩和坏死。1,2-二氯乙烷在暴露人群中潜在的致癌性尚未广泛研究。它在人类细胞原代培养中诱导了非计划性DNA合成,并在几个细胞系中引起了基因突变。人类细胞系中的突变频率与谷胱甘肽-S-转移酶活性的差异有关。动物研究:1,2-二氯乙烷在实验动物中的急性毒性较低。几种实验动物短期和亚慢性研究的结果表明,肝脏和肾脏是靶器官。几种物种在亚慢性暴露于空气中的1,2-二氯乙烷浓度后,观察到肝脏形态变化。大鼠在亚慢性口服给药后相对肝脏重量增加。在实验动物上进行的1,2-二氯乙烷的致癌性生物分析中,并没有报告吸入暴露的大鼠或小鼠任何类型肿瘤发生率显著增加。吸入暴露的雌性大鼠乳腺腺瘤和纤维腺瘤的发生率有非显著增加。相比之下,有令人信服的证据表明,两种物种在摄入后肿瘤发生率增加。在大鼠经灌胃每日给药后,多个部位(包括胃的鳞状细胞癌(雄性)、血管肉瘤(雄性和雌性)、皮下组织的纤维瘤(雄性)、乳腺的腺癌和纤维腺瘤(雌性))的肿瘤发生率显著增加。在小鼠经灌胃每日给药后,多个部位(包括肺泡/支气管腺瘤(雄性和雌性)、乳腺腺癌(雌性)和子宫内膜间质息肉或子宫内膜间质肉瘤合并(雌性)以及肝细胞癌(雄性))的肿瘤发生率也类似增加。在雌性小鼠重复经皮应用1,2-二氯乙烷后,肺肿瘤(良性乳头状瘤)的发生率显著增加。与单独给予吸入的1,2-二氯乙烷或饮食中的双硫仑相比,同时暴露于这两种化合物的大鼠胆管内胆管瘤和囊肿、皮下纤维瘤、肝肿瘤结节、睾丸间质细胞肿瘤和乳腺腺癌的发生率增加。没有启动或促进肿瘤发展的潜在性。在体外实验中,1,2-二氯乙烷在鼠伤寒沙门氏菌的致突变生物分析中一直呈阳性。在培养的哺乳动物细胞中,1,2-二氯乙烷与DNA形成加合物。它还在啮齿类动物细胞原代培养中诱导非计划性DNA合成,并在几个细胞系中引起基因突变。没有证据表明1,2-二氯乙烷在实验动物中具有致畸性。生态毒性研究:在绿藻(小球藻)中,随着1,2-二氯乙烷浓度的增加,丙二醛(MDA)的含量增加。当大麦(Hordeum vuigare)的种子在20°C下用30.3 mM的1,2-二氯乙烷处理24小时时,突变频率增加。
IDENTIFICATION AND USE: 1,2-Dichloroethane is a colorless, oily liquid. It is used in production of vinyl chloride, trichloroethylene, vinylidene chloride, and trichloroethane. It is also used as lead scavenger in antiknock gasoline, paint, varnish, and finish removers, metal degreasing, soaps and scouring compounds, wetting and penetrating agents, ore flotation, and as a solvent. HUMAN STUDIES: Acute incidental exposure to 1,2-dichloroethane by inhalation or ingestion has resulted in a variety of effects in humans, including effects on the central nervous system, liver, kidney, lung and cardiovascular system. The respiratory effects exhibited by individuals who died following acute oral exposure to 1,2-dichloroethane included congestion, pulmonary edema (at 570 mg/kg/day) and bronchitis. Ingestion of >/= 570 mg/kg/day of 1,2-dichloroethane resulted in severe hepatocellular damage and liver atrophy and necrosis. The potential carcinogenicity of 1,2-dichloroethane in exposed human populations has not been extensively investigated. It induced unscheduled DNA synthesis in primary cultures of human cells and gene mutation in several cell lines. Mutation frequency in human cell lines has been correlated with differences in glutathione-S-transferase activity. ANIMAL STUDIES: The acute toxicity of 1,2-dichloroethane is low in experimental animals. The results of short-term and subchronic studies in several species of experimental animals indicate that the liver and kidneys are the target organs. Morphological changes in the liver were observed in several species following subchronic exposure to airborne concentrations. Increases in the relative liver weight have been observed in rats following subchronic oral administration. The carcinogenicity of 1,2-dichloroethane has been investigated in a bioassays on experimental animals and significant increases were not reported in the incidence of any type of tumor in rats or mice exposed by by inhalation. There was a non-significant increase in the incidence of mammary gland adenomas and fibroadenomas in female rats exposed by inhalation. In contrast, there was convincing evidence of increases in tumor incidence in two species following ingestion. Significant increases in the incidence of tumors at several sites (including squamous cell carcinomas of the stomach (males), hemangiosarcomas (males and females), fibromas of the subcutaneous tissue (males), adenocarcinomas and fibroadenomas of the mammary gland (females)) were observed in rats administered daily doses by gavage. Similar increases in the incidences of tumors at multiple sites (including alveolar/bronchiolar adenomas (males and females), mammary gland adenocarcinomas (females) and endometrial stromal polyp or endometrial stromal sarcoma combined (females) and hepatocellular carcinomas (males)) occurred in mice administered daily doses by gavage. The incidence of lung tumors (benign papillomas) was significantly increased in female mice following repeated dermal application of 1,2-dichloroethane. Concomitant exposure to inhaled 1,2-dichloroethane and disulfiram in the diet resulted in an increased incidence of intrahepatic bile duct cholangiomas and cysts, subcutaneous fibromas, hepatic neoplastic nodules, interstitial cell tumors in the testes and mammary adenocarcinomas in rats, compared to rats administered either compound alone or untreated controls. No potential to initiate or promote tumor development was evident. In in vitro assays, 1,2-dichloroethane has been consistently positive in mutagenicity bioassays in Salmonella typhimurium. In cultured mammalian cells, 1,2-dichloroethane forms adducts with DNA. It also induces unscheduled DNA synthesis in primary cultures of rodent cells and gene mutation in several cell lines. There is no evidence that 1,2-dichloroethane is teratogenic in experimental animals. ECOTOXICITY STUDIES: In Chlorella pyrenoidosa the content of malondialdehyde (MDA) increased with the increasing concentration of 1,2-dichloroethane. An increase in mutation frequency was reported in barley (Hordeum vuigare) when kernels were treated for 24 hrs at 20 °C with 30.3 mM 1,2-dichloroethane.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
1,2-二氯乙烷被代谢为2-氯乙醛,通过和谷胱甘肽结合形成S-(2-氯乙基)谷胱甘肽,以及其他可能的活性中间体,这些中间体能够与肝脏、肾脏和其他组织中的细胞大分子共价结合。1,2-二氯乙烷与谷胱甘肽的结合主要由谷胱甘肽S-转移酶催化。1,2-二氯乙烷在较小程度上可以通过肝脏微粒体细胞色素P-450酶系统激活为致突变物种。肝脏微粒体细胞色素P-450产生的1,2-二氯乙烷的活性代谢物可以与细胞蛋白和DNA结合。有观点认为,当生物转化过程饱和时,1,2-二氯乙烷的毒性会发生,这使得更高水平的1,2-二氯乙烷在体内循环并与谷胱甘肽结合,而不是被解毒和排出体外。
1,2-Dichloroethane is metabolized to 2-chloroacetaldehyde, S-(2-chloroethyl)glutathione by conjugation with glutathione, and to other putative reactive intermediates capable of binding covalently to cellular macromolecules in the liver, kidney, and other tissues. The conjugation of 1,2-dichloroethane with glutathione is catalyzed primarily by glutathione S-transferases. 1,2-Dichloroethane appears to be activated to mutagenic species to a lesser extent by the hepatic microsomal cytochrome P-450 enzyme system. Reactive metabolites of 1,2-dichloroethane produced by hepatic microsomal cytochrome P-450 can bind to cellular proteins and DNA. It has been suggested that 1,2-dichloroethane-induced toxicity occurs when the biotransformation processes are saturated, thereby allowing higher levels of 1,2-dichloroethane to circulate throughout the body and conjugate with glutathione instead of being detoxified and eliminated. (L156, A113)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌性证据
评估:对于1,2-二氯乙烷对人类致癌性的证据不足。对于1,2-二氯乙烷对实验动物致癌性的证据是充分的。总体评估:1,2-二氯乙烷可能对人类具有致癌性(2B组)。
Evaluation: There is inadequate evidence in humans for the carcinogenicity of 1,2-dichloroethane. There is sufficient evidence in experimental animals for the carcinogenicity of 1,2-dichloroethane. Overall evaluation: 1,2-Dichloroethane is possibly carcinogenic to humans (Group 2B).
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
分类:B2;可能的人类致癌物。分类依据:基于经灌胃处理的大鼠和小鼠诱导多种肿瘤类型,以及小鼠局部应用后出现的肺乳头状瘤。人类致癌性数据:无。
CLASSIFICATION: B2; probable human carcinogen. BASIS FOR CLASSIFICATION: Based on the induction of several tumor types in rats and mice treated by gavage and lung papillomas in mice after topical application. HUMAN CARCINOGENICITY DATA: None.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
A4;不可分类为人类致癌物。
A4; Not classifiable as a human carcinogen.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
1,2-二氯乙烷(DCE)是一种普遍存在的环境污染物。人类接触DCE的主要途径是吸入其蒸汽。目前的调查旨在确定大鼠在吸入暴露期间和暴露结束后血液、肺、肝、脑、肾和腹脂中DCE的分布和积累情况。雄性大鼠暴露于160 ppm(体积比)的DCE蒸汽中360分钟,并测量了吸入暴露期间和暴露期结束后血液和组织中DCE的浓度。DCE在腹脂中的积累远大于血液和其他组织。我们在本研究中获得的信息是关于DCE的药代动力学和DCE介导的致癌性的有用基本数据:我们的结果表明,大鼠通过吸入暴露于DCE蒸汽诱发腹膜肿瘤的一个因素是DCE在腹脂中的积累。
The compound 1,2-dichloroethane (DCE) is a ubiquitous environmental contaminant. The primary route of exposure of humans to DCE is inhalation of its vapor. The present investigation was undertaken to determine the distribution and accumulation of DCE in the blood, lung, liver, brain, kidney and abdominal fat of rats during and after inhalation exposure. Male rats were exposed to 160 ppm (v/v) of DCE vapor for 360 min and the concentrations of DCE in the blood and tissues during the inhalation exposure period and after the end of the exposure period were measured. DCE accumulation in the abdominal fat was much greater than that in the blood and other tissues. The information we obtained in this study is useful basic data pertaining to the pharmacokinetics of DCE and DCE-mediated carcinogenicity: Our results suggest that one of the factors involved in the induction of peritoneal tumors in rats exposed to DCE vapor by inhalation is DCE accumulation in the abdominal fat.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
使用苯巴比妥(PB)、丁基羟基茴香醚(BHA)和双硫仑(DSF)对雄性SD大鼠进行预处理,研究其对1,2-二氯乙烷[乙烯二氯(EDC)]吸入动力学的 影响。采用气体摄取法。构建并表征了一个封闭的循环系统。所有预处理方案的速度曲线显示出对EDC浓度的饱和依赖性。这些饱和依赖性(米氏方程)似乎与酶促代谢有关。一般来说,两室稳态药代动力学模型描述了摄取数据。通过汉斯图进行数据转换,以计算吸入Km(环境中EDC浓度,在此浓度下,摄取以最大速率的一半进行)和Vmax(即最大代谢速率的最大摄取速率)。尽管PB和BHA预处理没有影响EDC的Km,但PB预处理增加了Vmax,而DSF预处理降低了Km和Vmax。
The effect of the pretreatment of male Sprague-Dawley rats with phenobarbital (PB), butylated hydroxyanisole (BHA) and disulfiram (DSF) on the inhalation kinetics of 1,2-dichloroethane [ethylene dichloride (EDC)] was studied by the gas uptake method. A closed recirculating system was constructed and characterized. The rate curves in all the pretreatment regimens showed saturable dependence on EDC concentration. These saturable dependencies (Michaelis-Menten) appeared to be associated with enzymatic metabolism. In general, a two-compartment, steady-state pharmacokinetic model described the uptake data. Data were transformed by Hanes plots to calculate the inhalational Km, the ambient EDC concentration at which uptake proceeded at half maximum rate, and Vmax, the maximum rate of uptake (i.e., maximum rate of metabolism). Although PB and BHA pretreatments did not affect the Km of EDC, PB pretreatment increased the Vmax while DSF pretreatment decreased both the Km and Vmax.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
1,2-二氯乙烷(1,2-EDC)及其代谢物2-氯乙醇、一氯乙酸和2-氯乙醛的水平通过气相色谱法在急性中毒的人类尸体器官中进行了测定。在胃和网膜中观察到了最高的1,2-二氯乙烷水平;在肾脏、脾脏、大脑、心脏、大小肠和血液中水平较低,而在肝脏中则没有检测到可量化的量。1,2-二氯乙烷的次要代谢物2-氯乙醇和一氯乙酸以小量存在于心肌、大脑、胃和小肠中。由于2-氯乙醛是1,2-二氯乙烷生物转化的反应中间体,因此在器官中无法检测到。给急性中毒的人类服用乙酰半胱氨酸没有显示出积极的临床效果。
The levels of 1,2-dichloroethane (1,2-EDC), and its metabolites 2-chloroethanol, monochloroacetic acid, and 2-chloroacetaldehyde were determined by gas chromatography in the organs of human cadavers in cases of acute poisoning. The highest 1,2-dichloroethane levels were observed in the stomach and omentum; lower levels in the kidney, spleen, brain, heart, large and small intestines, and blood, and no detectable amounts in the liver. 2-Chloroethanol and monochloroacetic acid, minor metabolites of 1,2-dichloroethane, were detected in small amounts in the myocardium, brain, stomach, and small intestine. 2-Chloroacetaldehyde, because it is a reactive intermediate in the biotransformation of 1,2-dichloroethane was not detectable in the organs. The administration of acetylcysteine to acutely intoxicated humans showed no positive clinical effect. ...
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
研究了大鼠服用1,2-二氯乙烷后尿液中硫代二甘酸和硫醚的排泄情况。雄性斯普拉格-道利大鼠口服给予0、0.12、0.25、0.50、1.01、2.02、4.04或8.08 umol/kg的(14)C标记的1,2-二氯乙烷。收集24小时内的尿液样本,并在碱性水解前后通过气相色谱和埃尔曼试剂/吸收光谱光度法(硫醚测定)分别分析硫代二甘酸和硫醚。随着1,2-二氯乙烷剂量的增加,排泄的1,2-二氯乙烷来源的放射性活性的量呈对数函数减少,从0.12和0.25 umol/kg剂量的62.1%降至8.08 umol/kg剂量的7.4%。尿液中硫代二甘酸的浓度与1,2-二氯乙烷剂量很好地相关,直至2.02 umol/kg。当以剂量的百分比表示时,尿液中硫代二甘酸的排泄在0.12至1.01 umol/kg的1,2-二氯乙烷剂量范围内不依赖于剂量,占剂量的21.8%。在碱性水解之前,无法检测到硫醚。碱性水解后,服用0.12和0.25 umol/kg剂量的大鼠的尿液中硫醚排泄与对照组值无显著差异。在0.25至4.04 umol/kg的1,2-二氯乙烷剂量范围内,硫醚排泄随着剂量的增加而线性增加。在给予8.08 umol/kg 1,2-二氯乙烷的大鼠中,硫醚/硫代二甘酸比率最高为0.17。尿液中的硫代二甘酸浓度不会因碱性水解而改变。结果表明,大鼠尿液中硫代二甘酸的排泄与口服1,2-二氯乙烷的剂量密切相关。尿液中硫代二甘酸的排泄可能是1,2-二氯乙烷暴露的有用指标。硫代二甘酸在碱性条件下被水解。硫醚测定法不适合估计尿液中硫代二甘酸的排泄。
Urinary excretion of thiodiglycolic acid and thioethers after 1,2-dichloroethane dosing was studied in rats. Male Sprague-Dawley rats were administered 0, 0.12, 0.25, 0.50, 1.01, 2.02, 4.04 or 8.08 umol/kg (14)C labeled 1,2-dichloroethane orally. Urine samples were collected for 24 hours and analyzed for thiodiglycolic acid and thioethers before and after alkaline hydrolysis by gas chromatography and the Ellman reagent/absorption spectrophotometry (thioether assay), respectively. The amounts of 1,2-dichloroethane derived radioactivity excreted decreased as a logarithmic function of increasing 1,2-dichloroethane dose ranging from 62.1% of the dose for 0.12 and 0.25 umol/kg 1,2-dichloroethane to 7.4% of the 8.08 umol/kg dose. The concentrations of urinary thiodiglycolic acid were well correlated with 1,2-dichloroethane dose up to 2.02 umol/kg. When expressed as a percentage of the dose urinary excretion of thiodiglycolic acid was not dependent on the dose over the range 0.12 to 1.01 umol/kg 1,2-dichloroethane and amounted to 21.8% of the dose. Before alkaline hydrolysis no thioethers could be detected. After alkaline hydrolysis, urinary excretion of thioethers by rats dosed with 0.12 and 0.25 umol/kg did not differ significantly from the control value. Between 0.25 and 4.04 umol/kg 1,2-dichloroethane, thioether excretion increased linearly with dose. The highest thioether/thiodiglycolic ratio 0.17 occurred in rats given 8.08 umol/kg 1,2-dichloroethane. Urinary thiodiglycolic acid concentrations were not altered by alkaline hydrolysis. The /results suggest/ that urinary thiodiglycolic acid excretion correlates well with the oral dose of 1,2-dichloroethane in rats. Urinary thiodiglycolic acid excretion may be a useful marker of 1,2-dichloroethane exposure. Thiodiglycolic acid is hydrolyzed under alkaline conditions. The thioether assay is not appropriate for estimating urinary thiodiglycolic acid excretion.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 职业暴露等级:
    B
  • 职业暴露限值:
    TWA: 1 ppm (4 mg/m3), STEL: 2 ppm (8 mg/m3) (Chloroethanes)
  • TSCA:
    Yes
  • 危险等级:
    3
  • 立即威胁生命和健康浓度:
    50 ppm
  • 危险品标志:
    F,T
  • 安全说明:
    S16,S24,S45,S53,S7
  • 危险类别码:
    R22,R45,R36/37/38,R11
  • WGK Germany:
    3
  • 海关编码:
    2903150000
  • 危险品运输编号:
    UN 1184 3/PG 2
  • 危险类别:
    3
  • RTECS号:
    KI0525000
  • 包装等级:
    II
  • 危险标志:
    GHS02,GHS06,GHS08
  • 危险性描述:
    H225,H302,H315,H319,H331,H335,H350
  • 危险性防范说明:
    P201,P210,P280,P308 + P313,P370 + P378,P403 + P235
  • 储存条件:
    储存于阴凉、通风良好的库房中,并远离火种与热源。库温不宜超过37℃,确保容器密封。避免与氧化剂、酸类、碱类及食用化学品混存,以防发生危险。使用防爆型照明和通风设施,并禁止使用易产生火花的机械设备和工具。储存区应配备泄漏应急处理设备和合适的收容材料。

SDS

SDS:bf2a27cb3d8952cc4eda6790fd9e11b5
查看
国标编号: 32035
CAS: 107-06-2
中文名称: 1,2-二氯乙烷
英文名称: 1,2-dichloroethane
别 名: 乙撑二氯;亚乙基二氯;1,2-二氯化乙烯;二氯乙烷(对称)
分子式: C 2 H 4 Cl 2 ;Cl(CH 2 ) 2 Cl
分子量: 98.97
熔 点: -35.7℃
密 度: 相对密度(水=1)1.26;
蒸汽压: 13℃
溶解性: 微溶于水,可混溶于醇、醚、氯仿
稳定性: 稳定
外观与性状: 无色或浅黄色透明液体,有类似氯仿的气味
危险标记: 7(中闪点易燃液体)
用 途: 用作蜡、脂肪、橡胶等的溶剂及谷物杀虫剂

2.对环境的影响:

一、健康危害

侵入途径:吸入、食入、经皮吸收。 健康危害:对眼睛及呼吸道有刺激作用;吸入可引起肺水肿;抑制中枢神经系统、刺激胃肠道和引起肝、肾和肾上腺损害。皮肤与液体反复接触能引起皮肤干燥、脱屑和裂隙性皮炎。液体和蒸气还能刺激眼,引起严重操作,角膜混浊。吸入高浓度的蒸气能刺激粘膜,抑制中枢神经系统,引起眩晕、恶心、呕吐、精神错乱,有的可致肺水肿。还能刺激胃肠道,引起肝和肾的脂肪性病变,严重的直至死亡。 急性中毒:其表现有二种类型,一为头痛、恶心、兴奋、激动,严重者很快发生中枢神经系统抑制而死亡;另一类型以胃肠道症状为主,呕吐、腹痛、腹泻,严重者可发生肝坏死和肾病变。急性暴露能导致呼吸和循环衰竭而死亡。其尸体剖检呈现出大多数内脏损伤和广泛性出血。

二、毒理学资料及环境行为

毒性:属高毒类,蒸气有剧毒。 急性毒性:LD50670mg/kg(大鼠经口);2800mg/kg(兔经皮);LC504050mg/m3,7小时(大鼠吸入) 刺激性:家兔经眼:63mg,重度刺激。家兔经皮开放性刺激试验:625mg,轻度刺激。 亚急性和慢性毒性:猴吸入0.22g/m3,7小时/天,5天/周,125次,无症状;4.11g/m3,7小时/天,5天/周,25~50次,死亡率较高;大鼠吸入4.11g/m3×7小时/日×5日/周×3~14次,致死;豚鼠吸入4.113×7小时/日×2次,致死。 致突变性:DNA抑制:人淋巴细胞5ml/L。哺乳动物体细胞突变:人淋巴细胞100mg/L。 生殖毒性:大鼠吸入最低中毒浓度(TCL0):300ppm(7小时,孕6-15天),引起植入死亡率增加。 致癌性:IARC致癌性评论:动物阳性,人类可疑。小/大鼠吸入250ppm×7小时/日×18月,终身未见肿瘤发病率增高;大鼠经口25ppm×5天/周×78周,致癌阳性。

污染来源:1,2-二氯乙烷用于制造乙二醇、乙二胺、聚氯乙烯、尼龙、粘胶人造纤维、苯乙烯-丁二烯橡胶和各种塑料、香料、肥皂、粘合剂、润肤剂、药物及假漆;用作树脂、沥青、橡胶、醋酸纤维素、纤维素酯、油漆、油脂、蜡及聚合物(如聚苯乙烯的溶剂),豆油和咖啡因的提取剂;浸渍剂、湿润剂、渗透剂、熏蒸剂;还用于照像术、静电印刷、水软化中。裂解法制造氯乙烯单体时可产生二氯乙烷;二氯乙烷也是某些有机化学合成中的副产品。在以上生产和使用1,2-二氯乙烷的企业在生产和贮运过程中由于意外事故均可对环境造成污染,对人体造成危害。

代谢和降解:氯乙醇是1,2-氯乙烷在温血动物体内的主要代谢物之一。进入体内的1,2-二氯乙 烷首先贮存于脂肪组织中,以后(2天内)从脂肪组织转移进入血液,由于酶的脱氢作用,代谢转化变成氯乙醇,氯乙醇系一种高毒化学物质。它进一步代谢可变成一氯乙酸,氯乙醛是介于氯乙烷与一氯乙酸之间的又一个中间代谢产物。在1,2-二氯乙烷代谢产物中,氯乙醇和一氯乙酸的毒性比二氯乙烷本身更大。CH2Cl-CH2Cl-CH2Cl-CH2OH-CH2Cl-CHO-CH2Cl-COOH 在环境中,二氯乙烷代谢生成氯乙酸的速度,随湿度与温度的增加而加快,在90℃的湿空气中,二氯乙烷有0.66%分解生成氯乙酸,当温度升高到110℃和140℃时,氯乙酸含量分别为4%和7%-12%。1,2-二氯乙烷在常温和干燥的环境中较难被降解。光与大气中氧对纯品二氯乙烷很少发生影响,而含有杂质的工业品二氯乙烷受到光与所的联合作用可产生光气和某些聚合化学物。 残留、蓄积与扩散:二氯乙烷能迅速透进无损伤皮肤吸收并在血液中达很高水平。不论染毒剂量和途径怎样,二氯乙烷在人体和动物体各个器官内的含量关系基本上是个常数,例如假定在血液中的含量为1,那么在其它各器官中相应比率为:肝脏0.8;肾脏0.44;心脏0.7;延脑0.57;小脑、脑皮质和皮质下的中枢为0.15-0.2,显然这与该组织中的脂肪含量有关,因为二氯乙烷在脂肪中的溶解度是很大的。氯乙烷可以通过以代谢物的形式从人体和动物各个系统排出,二氯乙烷可以经肾脏从尿中排出,出可以通过呼气排出。 危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。受高热分解产生有毒的腐蚀性烟气。与氧化剂接触发生反应,遇明火、高热易引起燃烧,并放出有毒气体。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳、氯化氢、光气。

3.现场应急监测方法:

直接进水样气相色谱法快速检测管法;便携式气相色谱法《突发性环境污染事故应急监测与处理处置技术》万本太主编

4.实验室监测方法:

监测方法 来源 类别
溶剂解吸气相色谱法 WS/T138-1999 作业场所空气
无泵型采样气相色谱法 WS/T154-1999 作业场所空气
气相色谱法;
吡啶-碱比色法
《空气中有害物质的测定方法》(第二版),杭士平编 空气
气相色谱法 《固体废弃物试验与分析评价手册》中国环境监测总站等译 固体废弃物
硫氰酸汞比色法 《化工企业空气中有害物质测定方法》,化学工业出版社 化工企业空气
吹扫捕集-气相色谱法 中国环境监测总站 水质
色谱/质谱法 美国EPA524.2方法 水质

5.环境标准:

中国(TJ36-79) 车间空气中有害物质的最高容许浓度 25mg/m 3
中国(待颁布) 饮用水源中有害物质的最高容许浓度 0.03mg/L
中国(GHZB1-1999) 地表水环境质量标准(I、II、III类水域) 0.005mg/L
日本(1993) 环境标准 地面水:0.004mg/L
废水:0.004mg/L
土壤浸出液:0.004mg/L


6.应急处理处置方法:

一、泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。1,2-二氯乙烷与四氯化碳的物理特征相似,故在土壤和水体受到其污染后可用相同的处置技术。 ⑴1,2-二氯乙烷,发生于地面上的污染事故紧急处理方法: ①迅速用土、沙子或其它可以取到的材料筑成坝以阻止液体的流动,特别要防止其流入附近的水体中,用土壤将其覆盖并将其吸收。也可以在其流动的下方向挖一坑,将其收集在坑内以防四处扩散,然后将液体收集到合适的容器中。 ②在处理过程中不要用铁器(如铁勺、铁容器、铁铲等),应改用其它工具,因为铁有助于1,2-二氯乙烷分解生成毒性更大的光气。有条件的话,操作人员在处理过程中应戴上防毒面具,或其它防护设备。 ③将受污染的土壤清除剥离后集中进行处理,有以下几种方法可视情况选用: a.加热土壤并加水,使1,2-二氯乙烷生成甲酸、一氧化碳和盐酸; b.将浓碱液加入到土壤中使其与1,2-二氯乙烷反应生成一氧化碳; c.将稀的氢氧化钠或氢氧化钾加入土壤中,使其与1,2-二氯乙烷反应生成甲酸钠或甲酸钾; 以上操作应避免在光照条件下进行。 d.对土壤进行焚烧处理,要保证完全燃烧,以防止光气产生。 ⑵由于1,2-二氯乙烷在环境中很稳定,可利用其易挥发的特点进行自然或人工强制性挥发至大气中。当有大量气态1,2-二氯乙烷挥发弥散时,应疏散污染源下风向的人群,以防中毒。 ⑶水体中受到污染时的处理处置技术:当1,2-二氯乙烷液体进入水体后,应设法阻断受污染水域与其它水域的通道,其方法为筑坝使其停止流动;开沟使其流向另一水体(如排污渠)等等。由于四氯甲烷属挥发性卤代烃类,对受其污染的水体最为简便易行处理方法是使用曝气(包括深进曝气)法,使其迅速从水体中逸散到大气中。另外,处理土壤的几种方法也可酌情使用。 废弃物处置方法:用焚烧法。废料同其他燃料混合后焚烧。燃烧要充分,防止生成光气。焚烧炉排气中的卤化氢通过酸洗涤器除去。

二、防护措施

呼吸系统防护:空气中浓度超标时,应该佩戴过滤式防毒面具(半面罩)。紧急事态抢救可撤离时,佩戴隔离式呼吸器。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防静电工作服。 手防护:戴橡胶手套。 其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。注意个人清洁卫生。

三、急救措施

皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:洗胃。就医。

灭火方法:喷水冷却容器,可能的话将容器从火场移至空旷处。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:泡沫、干粉、二氧化碳、砂土。用水灭火无效。


制备方法与用途

1,2-二氯乙烷 物理化学性质
  • 毒性:LD₅₀为770 mg/kg(大鼠,经口)。ADI尚未规定(FAO/WHO,2001)。
  • 食品添加剂最大允许使用量和残留标准
    • 添加剂中文名称:1,2-二氯乙烷
    • 允许使用该种添加剂的食品中文名称:食品
    • 添加剂功能:食品工业用加工助剂
    • 最大允许使用量(g/kg):/
    • 最大允许残留量(g/kg):食品工业用加工助剂一般应在制成最后成品之前除去,有规定食品中残留量的除外。成品中最高允许残留量为30 mg/kg。
化学性质
  • 物理形态:无色透明油状液体,具有类似氯仿的气味,味甜。
  • 溶解性:溶于约120倍的水,与乙醇、氯仿、乙醚混溶。能溶解油和脂类、润滑脂、石蜡。
用途
  • 主要用于制造氯乙烯、乙二酸和乙二胺,还可作溶剂、谷物熏蒸剂、洗涤剂、萃取剂、金属脱油剂等。
  • 用作溶剂
  • 用作有机溶剂和油脂的萃取剂,也用于有机合成。
  • 1,2-二氯乙烷是杀菌剂稻瘟灵和植物生长调节剂矮壮素的中间体。
  • 抽提溶剂。主要用于由香辛料抽提油树脂,成品中最高允许残留量为30 mg/kg。
  • GB 2760-96列为食品加工助剂。
生产方法
  1. 乙烯与氯气直接合成法:以乙烯和氯气在1,2-二氯乙烷介质中进行氯化生成粗二氯乙烷及少量多氯化物,加碱闪蒸除去酸性物及部分高沸物,用水洗涤至中性,共沸脱水,精馏,得成品。
  2. 乙烯氧氯化法:乙烯直接与氯气氯化生成二氯乙烷。由二氯乙烷裂解制氯乙烯时回收的氯化氢和预热至150-200℃的含氧气体(空气)和乙烯,通过载于氧化铝上的氯化铜触媒,在压力0.0683-0.1033 MPa、温度200-250℃下反应。粗产品经冷却、加压、精制,得二氯乙烷产品。
  3. 由石油裂解气或焦炉的乙烯直接氯化的方法:此外,在氯乙醇、环氧乙烷的生产中还副产有1,2-二氯乙烷。
生产方法(补充)
  1. 1,2-二氯乙烷的制备方法是将乙烯和氯气同时鼓泡通入充有二氯乙烷的氯化器中,乙烯被氯化生成1,2-二氯乙烷。反应过程中应进行冷却,生成的二氯乙烷用碱液中和至中性,分层、精馏即得成品。
分类
  • 类别:易燃液体
  • 毒性分级:高毒
    • 急性毒性
      • 口服-大鼠 LD₅₀: 670 毫克/公斤;
      • 口服-小鼠 LD₅₀: 413 毫克/公斤。
  • 刺激数据
    • 皮肤-兔子 500 毫克/24小时 轻度
    • 眼- 兔子 500 毫克/24小时 轻度
  • 爆炸物危险特性:与空气混合可爆。
  • 可燃性危险特性:遇明火、高温、氧化剂易燃;燃烧产生有毒氯化物烟雾。
  • 储运特性:库房通风低温干燥;与氧化剂、酸类分开存放。
  • 灭火剂:干粉、干砂、二氧化碳、泡沫、雾状水。
  • 职业标准
    • TWA 40 毫克/立方米
    • STEL 80 毫克/立方米

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1,2-二氯乙烷乙醇 、 alkaline earth nitrite 作用下, 生成 1-氯-2-硝基乙烷
    参考文献:
    名称:
    Production of halo-nitro-alkanes
    摘要:
    公开号:
    US02345701A1
  • 作为产物:
    描述:
    氯乙烯盐酸氧气 作用下, 219.84 ℃ 、100.0 kPa 条件下, 反应 12.0h, 生成 1,2-二氯乙烷
    参考文献:
    名称:
    保留在壳中:乙炔盐酸中高性能石墨烯限制的钌纳米粒子。
    摘要:
    钌基催化剂在通过乙炔氢氯化生产聚氯乙烯中的潜在应用受到阻碍,因为它们的活性和稳定性均比金基体系低,尽管价格低4倍。结合深入的表征和动力学分析,我们揭示了掺杂在氮掺杂碳(NC)上的最佳纳米尺寸为1.5 nm的钌纳米粒子的优越活性,并确定了它们的失活模式:1)纳米粒子再分散为非活性单原子和2)焦炭在金属部位形成。调节NC载体的密度可以在1073 K下将钌纳米颗粒催化包封到单层石墨烯壳中,从而防止不希望的金属再分散。最后,
    DOI:
    10.1002/anie.201906916
  • 作为试剂:
    描述:
    4-((3-(2-thienyl)prop-2-yn-1-yl)oxy)-4-methylcyclohexan-2,5-dien-1-one 在 diiodo(p-cymene)ruthenium(II) dimer 、 四丁基碘化铵1,2-二氯乙烷 作用下, 以80%的产率得到
    参考文献:
    名称:
    钌和碘阴离子共催化级联二卤化和内部炔系环己二烯与 1,2-二卤乙烷的环化
    摘要:
    我们建立了一种高效的钌(II)和碘阴离子共催化二卤化和内炔束缚环己二烯酮的级联环化,其在温和条件下以高产率立体选择性地提供了大量具有生物活性氢苯并呋喃骨架的二卤化产物。在该转化中,反应途径由亲电子碘试剂的浓度决定,这也为控制反应选择性提供了策略。此外,该方法的特点是通过碘阴离子催化剂使用1,2-二卤乙烷作为卤素源。
    DOI:
    10.1021/acs.joc.4c00951
点击查看最新优质反应信息

文献信息

  • [EN] BCR-ABL TYROSINE-KINASE LIGANDS CAPABLE OF DIMERIZING IN AN AQUEOUS SOLUTION, AND METHODS OF USING SAME<br/>[FR] LIGANDS DE TYROSINE-KINASE BCR-ABL CAPABLES DE SE DIMÉRISER DANS UNE SOLUTION AQUEUSE, ET PROCÉDÉS D'UTILISATION DE CEUX-CI
    申请人:COFERON INC
    公开号:WO2015106292A1
    公开(公告)日:2015-07-16
    Described herein are monomers capable of forming a biologically useful multimer when in contact with one, two, three or more other monomers in an aqueous media. In one aspect, such monomers may be capable of binding to another monomer in an aqueous media (e.g. invivo) to form a multimer (e.g. a dimer). Contemplated monomers may include a ligand moiety, a linker element, and a connector element that joins the ligand moiety and the linker element. In an aqueous media, such contemplated monomers may join together via each linker element and may thus be capable of modulating one or more biomolecules substantially simultaneously, e.g., modulate two or more binding sites on a Bcr-Abl tyrosine kinase.
    本文描述了一种单体,当与水性介质中的另一个、两个、三个或更多其他单体接触时,能够形成生物学上有用的多聚体。在一个方面,这种单体可能能够在水性介质(例如体内)中与另一个单体结合以形成多聚体(例如二聚体)。考虑到的单体可能包括配体基团、连接元素和连接配体基团与连接元素的连接元素。在水性介质中,这些考虑到的单体可以通过每个连接元素结合在一起,因此可以同时调节一个或多个生物分子,例如,调节Bcr-Abl酪氨酸激酶上的两个或更多结合位点。
  • DIHYDROPYRIDAZINE-3,5-DIONE DERIVATIVE AND PHARMACEUTICALS CONTAINING THE SAME
    申请人:CHUGAI SEIYAKU KABUSHIKI KAISHA
    公开号:US20160002251A1
    公开(公告)日:2016-01-07
    The present invention provides a dihydropyridazine-3,5-dione derivative or a salt thereof, or a solvate of the compound or the salt, a pharmaceutical drug, a pharmaceutical composition, a sodium-dependent phosphate transporter inhibitor, and a preventive and/or therapeutic agent for hyperphosphatemia, secondary hyperparathyroidism, chronic renal failure, chronic kidney disease, and arteriosclerosis associated with vascular calcification comprising the compound as an active ingredient, and a method for prevention and/or treatment.
    本发明提供了一种二氢吡啶嗪-3,5-二酮衍生物或其盐,或化合物或盐的溶剂化合物,一种药物,一种药物组合物,一种钠依赖性磷酸盐转运体抑制剂,以及作为活性成分的化合物的高磷血症、继发性甲状旁腺功能亢进症、慢性肾功能衰竭、慢性肾病和与血管钙化相关的动脉硬化的预防和/或治疗剂,以及预防和/或治疗的方法。
  • NMDA (n-methyl-d-aspartate) antagonists
    申请人:Hoechst Marion Roussell, Inc.
    公开号:US05922752A1
    公开(公告)日:1999-07-13
    The present invention is new excitatory amino acid antagonists (herein referred to as compounds of formula (1)): below: ##STR1## These new antagonists are useful as NMDA (N-methyl-D-aspartate) antagonists.
    本发明是新的兴奋性氨基酸拮抗剂(以下简称为式(1)的化合物):如下:##STR1## 这些新的拮抗剂可用作NMDA(N-甲基-D-天冬氨酸)拮抗剂。
  • Novel phenylacetic acid derivatives
    申请人:Schering Aktiengesellschaft
    公开号:US04407823A1
    公开(公告)日:1983-10-04
    Phenylacetic acid derivatives of the formula ##STR1## wherein n is an integer of 2 to 5; ##STR2## R.sub.1 is hydrogen, halogen, trifluoromethyl, nitro or amino; R.sub.2 and R.sub.3 each independently is hydrogen or lower alkyl; or together form an ethylene group; X.sub.1 represents two hydrogen atoms or an oxo group; and Y.sub.1 is cyano, hydroxyamidocarbonyl, carbamoyl, 5-tetrazolyl or carboxyl; and for derivatives wherein Y is carboxyl, salts thereof with physiologically compatible bases, esters thereof from physiologically acceptable alcohols and amides thereof from physiologically acceptable amines have valuable pharmacological activity, e.g., as antiinflammatory agents.
    苯乙酸衍生物的化学式如下:其中n为2至5的整数;R.sub.1为氢、卤素、三氟甲基、硝基或氨基;R.sub.2和R.sub.3各自独立地为氢或较低的烷基;或者一起形成一个乙烯基;X.sub.1代表两个氢原子或一个氧代基团;Y.sub.1为氰基、羟基酰胺基甲酰、氨基甲酰、5-四唑基或羧基;对于Y为羧基的衍生物,其与生理兼容碱盐、与生理上可接受的醇酯和与生理上可接受的胺酰衍生物具有有价值的药理活性,例如作为抗炎药物。
  • [EN] SELF-IMMOLATIVE LINKERS CONTAINING MANDELIC ACID DERIVATIVES, DRUG-LIGAND CONJUGATES FOR TARGETED THERAPIES AND USES THEREOF<br/>[FR] LIEURS AUTO-IMMOLABLES CONTENANT DES DÉRIVÉS D'ACIDE MANDÉLIQUE, CONJUGUÉS MÉDICAMENT-LIGAND POUR THÉRAPIES CIBLÉES, ET LEURS UTILISATIONS
    申请人:ASANA BIOSCIENCES LLC
    公开号:WO2015038426A1
    公开(公告)日:2015-03-19
    The invention provides a therapeutic drug and targeting conjugate, pharmaceutical compositions containing these conjugates in pharmaceutical composition, and uses of these conjugates in anti-neoplastic and other therapeutic regimens. Also provided are novel intermediates thereof. The conjugates provide a therapeutic drug fragment or prodrug fragment bound to a targeting moiety via a linker which comprises a substrate cleavable by a protease such as Cathepsin B. The targeting moiety is a ligand which targets a cell surface molecule, such as a cell surface receptor on an anti-neoplastic cell. The ligand may function solely as a targeting moiety or may itself have a therapeutic effect. Following administration of the therapeutic drug and targeting conjugate of formula I and exposure of the conjugate to the protease specific for the substrate, the linker is cleaved and the targeting moiety is separated from the conjugate, which causes the drug fragment or prodrug fragment to convert to the drug or prodrug. The recited conjugates are useful in anti-neoplastic therapies. Also provided are methods of making the therapeutic drug and targeting conjugates and intermediates thereof, and kits comprising the therapeutic drug and targeting conjugates.
    该发明提供了一种治疗药物和靶向共轭物,包含这些共轭物的药物组合物,以及这些共轭物在抗肿瘤和其他治疗方案中的用途。还提供了其新颖的中间体。这些共轭物通过一个由蛋白酶如半胱氨酸蛋白酶B可切割的底物组成的连接物将治疗药物片段或前药片段与靶向基团结合。靶向基团是一个以细胞表面分子为靶点的配体,例如抗肿瘤细胞上的细胞表面受体。该配体可能仅作为靶向基团,也可能本身具有治疗效果。在给药公式I的治疗药物和靶向共轭物并使共轭物暴露于特异于底物的蛋白酶的情况下,连接物被切割,靶向基团与共轭物分离,导致药物片段或前药片段转化为药物或前药。所述的共轭物在抗肿瘤疗法中很有用。还提供了制备治疗药物和靶向共轭物及其中间体的方法,以及包含治疗药物和靶向共轭物的试剂盒。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台