Isophorone appears as a clear colorless liquid, with a camphor-like odor. Less dense than water and insoluble in water. Boiling point 420°F. Flash point near 200°F. Contact irritates skin and eyes. Toxic by ingestion. Used as a solvent and in pesticides.
颜色/状态:
Water-white liquid
气味:
Peppermint-like odor
蒸汽密度:
4.77 (NTP, 1992) (Relative to Air)
蒸汽压力:
0.438 mm Hg @ 25 °C
自燃温度:
860 °F; 460 °C
粘度:
2.62 cP @ 20 °C
燃烧热:
-16,170 BTU/lb= -8,980 cal/g= -376x10+5 J/kg
汽化热:
43.4 kJ/mol
表面张力:
32 dyn/cm @ 20 °C
电离电位:
9.07 eV
气味阈值:
Odor detection in air= 2.00 ppm. Purity not specified.
The allylic methyl group of isophorone was oxidized to a carboxylic acid group when industrial isophorone was administered orally to rabbits. The product was detected in urine and no other products were identified.
Rabbits & rats treated orally with isophorone excreted unchanged isophorone in the expired air & in the urine. The urine also contained 3-carboxy-5,5-dimethyl-2-cyclohexene-1-one & glucuronic conjugates of 3,3,5-trimethyl-2-cyclohexene-1-ol (isophorol), 3,5,5,-trimethylcyclohexanone (dihydroisophorone), & cis- & trans-3,5,5-trimethylcyclohexanols. Rat urine contained more dihydroisophorone & less isophorol than did rabbit urine. ... /It was/ proposed that metab of isophorone involves methyloxidation to 3-carboxy-5,5-dimethyl-2-cyclohexene-1-one, reduction of the ketone group to isophorol, reduction of the ring double bond to dihydroisophorone, & dismutation of dihydroisophorone to cis- & trans-3,5,5-trimethylcyclohexanols.
IDENTIFICATION: Isophorone is a colorless liquid with a peppermint like odor. It is soluble in water and miscible with most organic solvents. HUMAN EXPOSURE: The odor of isophorone can be detected at low concentrations. Eye, nose and throat irritation has been observed along with nausea, headache, dizziness, faintness and inebriation. Dermal and inhalation exposure may occur along with oral exposure from drinking water. ANIMAL STUDIES: Distribution studies in rats using (14)C isophorone showed that 93% of orally administered radioactivity appeared mainly in the urine and expired air within 24 hr. The tissues retaining the highest concentration after this period were the liver, kidney and preputial glands. The metabolites from oral administration of isophorone identified in rabbit urine resulted from the oxidation of the 3-methyl group, reduction of the keto group and hydrogenation of the double bond of the cyclohexene ring, and were eliminated as such or as glucuronide derivatives in the case of the alcohols. In animal studies, data indicate that isophorone is rapidly absorbed through the skin. Acute effects from dermal exposure in rats and rabbits ranged from mild erythema to scabs. Conjunctivitis and corneal damage have been reported following direct application to the eye or exposure to high concentrations of isophorone. In acute and short-term oral studies on rodents at high doses degenerative effects were seen in the liver and CNS depression and some deaths. In a 90 day oral study in beagle dogs (with limited numbers) no effects were seen at doses up to 150 mg/kg body weight per day. Isophorone does not induce gene mutations in bacteria, chromosomal aberrations in vitro, DNA repair in primary rat hepatocytes, or bone marrow micronuclei in mice. Positive effects were observed only in the absence of an exogenous metabolic system in L5178YTK +/- mouse mutagenesis assays as well as in a sister chromatid exchange assay. Isophorone induced morphological transformation in vitro in the absence of an exogenous metabolism system. It did not induce sex linked recessive lethal mutations in Drosophilia. In long term oral toxicity studies in mice and rats, male rats showed several lesions of the kidney, including nephropathy, tubular cell hyperplasia and low incidence of tubular cell adenomas and adenocarcinomas. Isophorone exposure was associated with some neoplastic lesions of the liver, and the integumentary and lymphoreticular systems of male mice, as well non-neoplastic liver and adrenal cortex lesions, but this was not observed in female mice. In /one/ long term inhalation study in rats and rabbits, irritation to eye and nasal mucosa, and lung and liver changes were observed. Very limited studies in rats and mice indicate that isophorone does not affect fertility nor does it cause developmental toxicity in experimental animals. The fact that central nervous system depression occurs in experimental animals could indicate a positive neurotoxic effect. Isophorone also elicited a positive effect in the behavioral despair swimming test. No data on terrestrial animals were available. The available data suggest that isophorone has a low toxicity to aquatic organisms.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
致癌性证据
癌症分类:C组可能的人类致癌物
Cancer Classification: Group C Possible Human Carcinogen
CLASSIFICATION: C; possible human carcinogen. BASIS FOR CLASSIFICATION: Based on no data in humans; limited evidence of carcinogenicity of one tumor type in one sex of one animal species as shown by an increase of preputial gland carcinomas in male rats. The apparent renal tubular cell tumor in the male rat is associated with alpha-2u-globulin, considered to be of questionable relevance to humans. HUMAN CARCINOGENICITY DATA: None. ANIMAL CARCINOGENICITY DATA: Limited.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
致癌性证据
A3; 已确认的动物致癌物,对人类的相关性未知。
A3; Confirmed animal carcinogen with unknown relevance to humans.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
暴露途径
这种物质可以通过吸入、皮肤接触和摄入被身体吸收。
The substance can be absorbed into the body by inhalation, through the skin and by ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
Preliminary results of a pharmacokinetic study indicate that rats treated orally with 14C-isophorone excreted 93% of the radiolabel in the urine, expired air & feces in 24 hr. The majority was found in the urine indicating that isophorone was well absorbed. The wide distribution of isophorone in the organs of rats & a rabbit 1-5 hr after dosing by gavage with 4000 mg/kg indicates rapid GI absorption. In two rabbits given a gavage dose of 1000 mg/kg isophorone, a blood level of isophorone of 102 ug/L was found within 10 min. The level increased to 141 ug/L in 30 min & declined to < or = 0.05 ug/L in 21 hr. The results indicate rapid absorption & elimination. The detection of unchanged isophorone & its metabolites in the urine & the observations of systemic toxicity & carcinogenicity in animals exposed orally to isophorone provide qualitative evidence that isophorone is absorbed after oral exposure.
In rats exposed to 400 ppm isophorone for 4 hr & sacrificed immediately after exposure or 1.5 or 3 hr after exposure, levels of isophorone were highest in all tissues examined (brain, lungs, heart, stomach, liver, spleen, pancreas, kidney, adrenals, testicles, & ovaries) immediately after exposure. Levels ranged from 1.5-74 ug/g tissue wet weight. The levels declined rapidly in males but declined very little in females by 3 hr after exposure.
Radiolabel was widely distributed in male rats 24 hr after an oral dose of 14C-isophorone in corn oil, with highest levels in the liver, kidney, preputial gland, testes, brain, & lungs. Isophorone was widely distributed to the tissues of rats & a rabbit following treatment with isophorone at a gavage dose of 4000 mg/kg. The rats died within 1-5 hr & the rabbit died within an hr after dosing at which times the tissues were sampled for analysis. in rats, tissue levels of isophorone in ug/g tissue wet weight were as follows: stomach-6213, pancreas-2388, adrenals-1513, spleen-1038, liver-613, brain-378, lung-383, heart-387, kidney-465, testes-275, & ovaries-471. In the rabbit, tissue levels were as follows: stomach-5395, adrenals-1145, ovaries-3000, spleen-545, liver-515, kidney-295, heart-260, & lungs-50.
[EN] SUBSTITUTED QUINAZOLINES AS FUNGICIDES<br/>[FR] QUINAZOLINES SUBSTITUÉES, UTILISÉES EN TANT QUE FONGICIDES
申请人:SYNGENTA PARTICIPATIONS AG
公开号:WO2010136475A1
公开(公告)日:2010-12-02
The present invention relates to a compound of formula (I) wherein wherein the substituents have the definitions as defined in claim 1or a salt or a N-oxide thereof, their use and methods for the control and/or prevention of microbial infection, particularly fungal infection, in plants and to processes for the preparation of these compounds.
Substituent Group Variations Directing the Molecular Packing, Electronic Structure, and Aggregation-Induced Emission Property of Isophorone Derivatives
ring or aza-crown-ether group, with large Stokes shifts (>140 nm), have been synthesized and characterized. 1–4 display aggregation-inducedemission behaviors, while dye 5 is highly emissive in solution but quenched in the solid state. It was found that the tuning of emissioncolor of the isophorone-based compounds in the solid state could be conveniently accomplished by changing the terminal substituent
Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins
作者:Anthony Millet、Quentin Lefebvre、Magnus Rueping
DOI:10.1002/chem.201602257
日期:2016.9.12
A tin‐ and halide‐free, visible‐light photoredox‐catalyzed Giese reaction was developed. Primary and secondary α‐amino radicals were generated readily from aminoacids in the presence of catalytic amounts of an iridium photocatalyst. The reactivity of the α‐amino radicals has been evaluated for the functionalization of a variety of activated olefins.