10-溴癸酸是一种片状结晶物质,主要用作有机合成中间体。
化学性质有机合成中间体。
生产方法 方法一中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
10-羟基癸酸 | 10-hydroxydecanoic acid | 1679-53-4 | C10H20O3 | 188.267 |
10-溴代癸酸甲酯 | 10-bromodecanoic acid methyl ester | 26825-94-5 | C11H21BrO2 | 265.191 |
9-癸烯酸 | dec-9-enoic acid | 14436-32-9 | C10H18O2 | 170.252 |
10-溴-1-癸醇 | 1-bromo-10-decanol | 53463-68-6 | C10H21BrO | 237.18 |
10-溴癸醛 | 10-bromodecanal | 85920-81-6 | C10H19BrO | 235.164 |
9-Dec烯酸甲酯 | 9-decenoic acid methyl ester | 25601-41-6 | C11H20O2 | 184.279 |
10-乙酰氧基癸酸 | 10-acetoxydecanoic acid | 92038-37-4 | C12H22O4 | 230.304 |
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
—— | 9-Bromodecanoic Acid | 134781-66-1 | C10H19BrO2 | 251.164 |
硬脂酸 | stearic acid | 57-11-4 | C18H36O2 | 284.483 |
二十烷二酸 | octadecane-1,18-dicarboxylic acid | 2424-92-2 | C20H38O4 | 342.519 |
正癸酸 | 1-decanoic acid | 334-48-5 | C10H20O2 | 172.268 |
二十四烷二酸 | 1,24-tetracosanedi acid | 2450-31-9 | C24H46O4 | 398.627 |
10-溴代癸酸甲酯 | 10-bromodecanoic acid methyl ester | 26825-94-5 | C11H21BrO2 | 265.191 |
—— | 9-hydroxydecanoic acid | 1422-27-1 | C10H20O3 | 188.267 |
10-氨基癸酸 | 10-aminodecanoic acid | 13108-19-5 | C10H21NO2 | 187.282 |
11-十二碳炔酸 | dodec-11-ynoic acid | 16900-60-0 | C12H20O2 | 196.29 |
—— | 10-Methoxydecanoic acid | 150098-32-1 | C11H22O3 | 202.294 |
9-癸炔酸 | dec-9-ynoic acid | 1642-49-5 | C10H16O2 | 168.236 |
—— | 10-iododecanoic acid | 71736-18-0 | C10H19IO2 | 298.164 |
—— | 11-mercaptoundecanoic acid | 147438-23-1 | C10H20O2S | 204.334 |
—— | 10-cyanodecanoic acid | 100400-58-6 | C11H19NO2 | 197.277 |
9-癸烯酸 | dec-9-enoic acid | 14436-32-9 | C10H18O2 | 170.252 |
13-甲基十五烷酸 | 13-methylpentadecanoic acid | 20121-96-4 | C16H32O2 | 256.429 |
—— | (S)-(+)-13-methylpentadecanoic acid | 340257-44-5 | C16H32O2 | 256.429 |
—— | 11-methyl-hexadecanoic acid | 17001-25-1 | C17H34O2 | 270.456 |
10-溴代癸酸乙酯 | ethyl 10-bromo-decanoate | 55099-31-5 | C12H23BrO2 | 279.217 |
10-溴-1-癸醇 | 1-bromo-10-decanol | 53463-68-6 | C10H21BrO | 237.18 |
10-溴癸醛 | 10-bromodecanal | 85920-81-6 | C10H19BrO | 235.164 |
10-丙氧基癸酸 | 11-oxatetradecanoic acid | 119290-00-5 | C13H26O3 | 230.348 |
—— | 9-Aminodecanoic Acid | 65706-63-0 | C10H21NO2 | 187.282 |
(11Z)-11-十六碳烯酸 | (11Z)-hexadec-11-enoic acid | 2416-20-8 | C16H30O2 | 254.413 |
10-十九碳烯酸 | cis-10-nonadecenoic acid | 73033-09-7 | C19H36O2 | 296.494 |
—— | (Z)-10-eicosenoic acid | 82683-03-2 | C20H38O2 | 310.521 |
—— | 17-cis-Eicosensaeure | 55833-23-3 | C20H38O2 | 310.521 |
—— | (10Z)-hexadec-10-enoic acid | 2511-97-9 | C16H30O2 | 254.413 |
—— | 20-methoxy-20-oxoicosanoic acid | 1767-98-2 | C21H40O4 | 356.546 |
9-甲酰基壬酸甲酯 | 10-oxo-decanoic acid methyl ester | 14811-73-5 | C11H20O3 | 200.278 |
—— | methyl 12-formyldodecanoate | 1608-77-1 | C14H26O3 | 242.359 |
十一酸甲酯 | methyl undecanoate | 1731-86-8 | C12H24O2 | 200.321 |
10-羟基癸酸甲酯 | methyl 10-hydroxydecanoate | 2640-94-0 | C11H22O3 | 202.294 |
—— | Docosa-11,16-diinsaeure | 3516-39-0 | C22H36O2 | 332.527 |
—— | 10-Methylsulfanyldecanoic acid | 91243-41-3 | C11H22O2S | 218.36 |
11-十二碳炔酸甲酯 | 11-dodecynoic acid methyl ester | 24567-43-9 | C13H22O2 | 210.316 |
—— | 11-thiastearic acid | 114692-27-2 | C17H34O2S | 302.522 |
—— | 10-(propylthio)decanoic acid | 119290-11-8 | C13H26O2S | 246.414 |
9-Dec烯酸甲酯 | 9-decenoic acid methyl ester | 25601-41-6 | C11H20O2 | 184.279 |
—— | methyl dec-9-ynoate | 62285-66-9 | C11H18O2 | 182.263 |
甲基十四碳-13-烯酸酯 | Methyl tetradec-13-enoate | 54716-25-5 | C15H28O2 | 240.386 |
—— | methyl 10-iododecanoate | 53602-13-4 | C11H21IO2 | 312.191 |
—— | (14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoic acid | 105517-82-6 | C32H52O2 | 468.764 |
—— | 1,24-tetracosanedi acid-11,13-diyne | —— | C24H38O4 | 390.563 |
—— | 10-ethoxycarbonyldecanal | 85318-87-2 | C13H24O3 | 228.332 |
10-乙酰氧基癸酸 | 10-acetoxydecanoic acid | 92038-37-4 | C12H22O4 | 230.304 |
Biofilm production is regulated by the Quorum Sensing system. Nowadays, Quorum Sensing represents an appealing target to design new compounds to increase antibiotics effects and avoid development of antibiotics multiresistance. In this research the use of liposomes to target two novel synthetic biofilm inhibitors is presented, focusing on a preformulation study to select a liposome composition for in vitro test. Five different liposome (LP) formulations, composed of phosphatidyl choline, cholesterol and charged surfactant (2:1:1, molar ratio) have been prepared by direct hydration and extrusion. As charged surfactants dicetyl phosphate didecyldimethylammonium chloride, di isobutyl phenoxy ethyl dimethyl benzyl ammonium chloride and stearylamine (SA) and have been used. Liposome charge, size and morphology were investigated by zeta potential, photon correlation spectroscopy, small angle x-ray spectroscopy and electron microscopy. LP-SA was selected for the loading of biofilm inhibitors and subjected to high performance liquid chromatography for entrapment capacity evaluation. LP-SA loaded inhibitors showed a higher diameter (223.6 nm) as compared to unloaded ones (205.7 nm) and a dose-dependent anti-biofilm effect mainly after 48 h of treatment, while free biofilm inhibitors loose activity. In conclusion, our data supported the use of liposomes as a strategy to enhance biofilm inhibitors effect.