The conversion of 1,4-butanediol (1,4-BD) to gamma-hydroxybutyric acid (GHB), a drug of abuse, is most probably catalyzed by alcohol dehydrogenase, and potentially by aldehyde dehydrogenase. The purpose of this study was to investigate the degradation of 1,4-BD in cytosolic supernatant of human liver in vitro, and to verify involvement of the suggested enzymes by means of gas chromatography-mass spectrometry. The coingestion of 1,4-BD and ethanol (EtOH) might cause complex pharmacokinetic interactions in humans. Therefore, the effect of EtOH on 1,4-BD metabolism by human liver was examined in vitro. Additionally, the influence of acetaldehyde (AL), which might inhibit the second step of 1,4-BD degradation, was investigated. In case of a 1,4-BD intoxication, the alcohol dehydrogenase inhibitor fomepizole (4-methylpyrazole, FOM) has been discussed as an antidote preventing the formation of the central nervous system depressing GHB. Besides FOM, we tested pyrazole, disulfiram, and cimetidine as possible inhibitors of the formation of GHB from 1,4-BD catalyzed by human liver enzymes in vitro. The conversion of 1,4-BD to GHB was inhibited competitively by EtOH with an apparent K(i) of 0.56 mM. Therefore, the coingestion of 1,4-BD and EtOH might increase the concentrations and the effects of 1,4-BD itself. By contrast AL accelerated the formation of GHB. All antidotes showed the ability to inhibit the formation of GHB. In comparison FOM showed the highest inhibitory effectiveness. Furthermore, the results confirm strong involvement of ADH in 1,4-BD metabolism by human liver.
1,4-Butanediol is completely metabolized in rabbits. No free 1,4-butanediol could be detected in the urine after oral administration of 4 mmol 1,4-butanediol/kg bw (equivalent to 361 mg/kg). About 1% of the administered dose was found to be conjugated with glucuronic acid, while 7% was excreted as succinic acid.
IDENTIFICATION AND USE: 1,4-Butanediol is a colorless, oily liquid. It is used as an industrial solvent, intermediate in organic synthesis, and polymer feedstock. Two studies have been identified concerning the experimental use of 1,4-butanediol as a sedative. HUMAN STUDIES: It was reported that sleep is induced by intravenous administration or by infusion. Undesirable side-effects which may occur include restlessness and clonic spasms of the muscle of the extremities. Cases of abuse and fatal intoxication have been reported. ANIMAL STUDIES: Gauze patches with undiluted 1,4-butanediol were applied to the intact and abraded skin of rabbits with occlusive dressing for 24 hours. After 1, 24, 48 and 72 hours, no reaction was observed on the intact and abraded skin. The main signs of toxicity seen in mice and rats were accelerated breathing, dyspnea, spasmodic breathing, bradycardia, exsiccosis, exophthalmus, apathy, hyperreflexia, hyporeflexia, areflexia, ataxia, atonia, twitching, reduced motility, analgesia, lying on the side, loss of righting reflexes, sedation, narcosis, hair loss and ruffled fur. Death occurred within 24 hours. Respiratory failure was thought to be the cause of death. Signs of intoxication appeared more quickly after rectal than after oral administration. In rat developmental studies, administration was conducted by gavage at doses of 200, 400 or 800 mg/kg/day from 14 days before mating to 14 days after mating in males and from 14 days before mating to day 3 of lactation in females. The parental animals exhibited no alteration in reproductive parameters including the copulation index, fertility index, gestation length, numbers of corpora lutea or implantation, implantation index, gestation index, delivery index, and behavior at delivery and lactation. Although neither the pup viability nor the incidence of morphological abnormalities was changed by administration of the compound, pup body weight was slightly but significantly decreased in the 800 mg/kg group. In a gene mutation assay using CHO cells, 1,4-butanediol did not induce any reproducible statistically or biologically significant increase in the mutant frequency of the HPRT (hypoxanthine-guanine phosphoribosyl transferase) locus with and without metabolic activation. A gene reverse mutation test was negative in S. typhimurium TA 100, TA 98, TA 1535, TA 1537 and E.coli WP2 uvrA with and without metabolic activation. ECOTOXICITY STUDIES: Toxicity of this chemical to aquatic organisms seems to be low, because all toxicity data obtained were higher than 85 mg/L or 1000 mg/L which were the maximum concentrations of exposure. No fish died, and no toxic symptoms were observed in fish exposed to 92.5 mg/L of this chemical throughout 14 day test period. Also, any reproduction impairment was not observed in D. magna exposed to 85 mg/L.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
暴露途径
该物质可以通过吸入其蒸汽和摄入进入人体。
The substance can be absorbed into the body by inhalation of its vapour and by ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
毒理性
吸入症状
困倦。
Drowsiness.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
毒理性
副作用
神经毒素 - 急性溶剂综合征
Neurotoxin - Acute solvent syndrome
来源:Haz-Map, Information on Hazardous Chemicals and Occupational Diseases
毒理性
毒性数据
低浓度致死剂量(大鼠)= 15,000 毫克/立方米/4小时
LCLo (rat) = 15,000 mg/m3/4h
来源:Haz-Map, Information on Hazardous Chemicals and Occupational Diseases
The illicit use and abuse of 1,4-butanediol (1,4-BD) results from its presumed conversion to gamma-hydroxybutyrate (GHB) and subsequent pharmacological effects via action on GABA-B and GHB-specific receptors. Using in vivo microdialysis we measured the appearance of GHB in the striata of rats after peripheral 1,4-BD administration. We developed and utilized an HPLC-UV (215 nm) detection of GHB that yielded a limit of quantification (S/N=10) of 2.0 micro g/mL (40 ng/injection) and a limit of detection (S/N=3) of 0.75 micro g/mL (15 ng/injection). GHB appeared in the striatal microdialysates within 20 min after intraperitoneal (i.p.) administration of varying doses of 1,4-BD. GHB concentrations reached dose-dependent maxima 80-100 min post-1,4-BD administration, with peak values of 10.6+/-2.9, 25.3+/-3.4 and 48.1+/-7.1 micro g/mL (mean+/-S.E.M.), corresponding to 1,4-BD doses of 250, 500 and 750 mg/kg, respectively. The conversion of 1,4-BD to GHB was completely prevented by the alcohol dehydrogenase inhibitor 4-methylpyrazole (4MP), administered prior to 1,4-BD, as evidenced by the failure of GHB to appear in the striatal microdialysates. Sleep times in animals were similarly correlated with GHB concentrations in the microdialysates.
1.周国泰,化学危险品安全技术全书,化学工业出版社,1997 2.国家环保局有毒化学品管理办公室、北京化工研究院合编,化学品毒性法规环境数据手册,中国环境科学出版社.1992 3.Canadian Centre for Occupational Health and Safety,CHEMINFO Database.1998 4.Canadian Centre for Occupational Health and Safety, RTECS Database, 1989
[EN] POLYMERS PREPARED FROM MIXTURES OF MULTIFUNCTIONAL N-VINYLFORMAMIDE AND HYBRID REACTIVE N-VINYLFORMAMIDE CROSSLINKING MONOMER MOIETIES AND USES THEREOF<br/>[FR] POLYMÈRES PRÉPARÉS À PARTIR DE MÉLANGES DE FRAGMENTS MONOMÈRES DE RÉTICULATION N-VINYLFORMAMIDE MULTIFONCTIONNELS ET N-VINYLFORMAMIDE RÉACTIFS HYBRIDES ET LEURS UTILISATIONS
申请人:ISP INVESTMENTS INC
公开号:WO2011084993A1
公开(公告)日:2011-07-14
The present invention provides polymers resulting from polymerization of at least one reactive vinyl monomer moiety and a multifunctional N-vinylformamide crosslinking moiety; polymers resulting from polymerization of at least one reactive vinyl monomer moiety and a hybrid N-vinylformamide crosslinking moiety having at least one N-vinylformamide functionality and at least one other reactive vinyl functionality; polymers resulting from polymerization of at least one hybrid reactive N-vinylformamide monomer moiety having one N-vinylformamide functionality and at least one other reactive non-vinyl functionality and a multifunctional N-vinylformamide crosslinking moiety; and polymers resulting from polymerization of at least one hybrid reactive N-vinylformamide monomer moiety having one N-vinylformamide functionality and at least one other reactive non-vinyl functionality and a hybrid N-vinylformamide crosslinking moiety having at least one N-vinylformamide functionality and at least one other reactive vinyl functionality. The invention further provides a wide variety of compositions comprising the novel crosslinked polymers.
[EN] MERTK DEGRADERS AND USES THEREOF<br/>[FR] AGENTS DE DÉGRADATION DE MERTK ET LEURS UTILISATIONS
申请人:KYMERA THERAPEUTICS INC
公开号:WO2020010210A1
公开(公告)日:2020-01-09
The present invention provides compounds, compositions thereof, and methods of using the same.
本发明提供了化合物、其组合物以及使用相同的方法。
BRM TARGETING COMPOUNDS AND ASSOCIATED METHODS OF USE
申请人:Arvinas Operations, Inc.
公开号:US20190300521A1
公开(公告)日:2019-10-03
The present disclosure relates to bifunctional compounds, which find utility as modulators of SMARCA2 or BRM (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a ligand that binds to the Von Hippel-Lindau E3 ubiquitin ligase, and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
TAU-PROTEIN TARGETING PROTACS AND ASSOCIATED METHODS OF USE
申请人:Arvinas, Inc.
公开号:US20180125821A1
公开(公告)日:2018-05-10
The present disclosure relates to bifunctional compounds, which find utility as modulators of tau protein. In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a VHL or cereblon ligand which binds to the E3 ubiquitin ligase and on the other end a moiety which binds tau protein, such that tau protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of tau. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of tau protein. Diseases or disorders that result from aggregation or accumulation of tau protein are treated or prevented with compounds and compositions of the present disclosure.