摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

来那度胺 | 191732-72-6

中文名称
来那度胺
中文别名
3-(7-氨基-3-氧代-1H-异吲哚-2-基)哌啶-2,6-二酮
英文名称
Lenalidomide
英文别名
3-(4-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione;3-(4-amino-1-oxo-1,3-dihydro-2H-isoindol-2-yl)piperidine-2,6-dione;3-(4-amino-1-oxo-1,3-dihydroisoindol-2-yl)piperidine-2,6-dione;revlimid;3-(7-amino-3-oxo-1H-isoindol-2-yl)piperidine-2,6-dione;(RS)-3-(4-amino-1-oxo-1,3-dihydro-2H-isoindol-2-yl)piperidine-2,6-dione;3-(4-amino-1-oxo-2,3-dihydro-1H-isoindol-2-yl)piperidine-2,6-dione;1-oxo-2-(2,6-dioxopiperidin-3-yl)-4-aminoisoindoline;3-(4-amino-1-oxoisoindol-2-yl)piperidine-2,6-dione;CC-5013;3-(4-amino-1,3-dihydro-1-oxo-2H-isoindol-2-yl)-2,6-piperidinedione;3-(4-amino-1,3-dihydro-1-oxo-2H-isoindol-2-yl)piperidine-2,6-dione;(RS)-3-(4-amino-1-oxo-3H-isoindol-2-yl)piperidine-2,6-dione;3-(4-amino-1-oxoisoindoline-2-yl)piperidine-2,6-dione;3-(4-amino-1-oxoisoindolin-2-yl)piperidin-2,6-dione;3-(7-azanyl-3-oxidanylidene-1H-isoindol-2-yl)piperidine-2,6-dione;Revamid;LNL
来那度胺化学式
CAS
191732-72-6
化学式
C13H13N3O3
mdl
——
分子量
259.265
InChiKey
GOTYRUGSSMKFNF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    265-268 °C
  • 沸点:
    614.0±55.0 °C(Predicted)
  • 密度:
    1.460±0.06 g/cm3(Predicted)
  • 溶解度:
    溶于 DMSO(高达 30 mg/ml)
  • 物理描述:
    Solid
  • 颜色/状态:
    Off-white to pale-yellow solid powder
  • 蒸汽压力:
    1.78X10-13 mm Hg at 25 °C (est)
  • 旋光度:
    Has an asymmetric carbon atom and can exist as the optically active forms S(-) and R(+), and is produced as a reacemic mixture with a net optical rotation of zero
  • 解离常数:
    pKa1 = 2.31 (primary amine); pKa2 = 11.61 (secondary amine) (est)

计算性质

  • 辛醇/水分配系数(LogP):
    -0.5
  • 重原子数:
    19
  • 可旋转键数:
    1
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.31
  • 拓扑面积:
    92.5
  • 氢给体数:
    2
  • 氢受体数:
    4

ADMET

代谢
来那度胺不经过广泛的肝脏代谢,涉及CYP酶,其在人体内的代谢对来那度胺的清除作用非常小。来那度胺在人体血浆中经水解形成5-羟基-来那度胺和N-乙酰-来那度胺。未经改变的来那度胺是循环中的主要药物形式,代谢物在循环中的水平不到母体药物水平的5%。
Lenalidomide is not subject to extensive hepatic metabolism involving CYP enzymes and metabolism contributes to a very minor extent to the clearance of lenalidomide in humans. Lenalidomide undergoes hydrolysis in human plasma to form 5-hydroxy-lenalidomide and N-acetyl-lenalidomide. Unchanged lenalidomide is the predominant circulating drug form, with metabolites accounting for less than five percent of the parent drug levels in the circulation.
来源:DrugBank
代谢
来那度胺 - 经历有限的代谢。在人体中,未改变的来那度胺是循环中的主要成分。已识别出的两种代谢物是羟基来那度胺和N-乙酰来那度胺;每一种在循环中的水平都不到原药的5%。
Lenalidomide -undergoes limited metabolism. Unchanged lenalidomide is the predominant circulating component in humans. Two identified metabolites are hydroxy-lenalidomide and N-acetyl-lenalidomide; each constitutes less than 5% of parent levels in circulation.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
识别和使用:来那度胺是一种从浅白色到淡黄色的固体粉末。来那度胺是一种免疫调节剂,具有抗肿瘤和抗血管生成的活性。它用于治疗因5q染色体缺失异常(可能伴有其他染色体异常)导致的低风险或中间风险-1骨髓增生异常综合征(MDS)而依赖输血的贫血患者。它还用于治疗在两种先前疗法(其中一种包括硼替佐米)后疾病复发或进展的套细胞淋巴瘤(MCL)患者。与地塞米松联合使用,用于治疗至少接受过一次先前治疗的多发性骨髓瘤(MM)患者。人类暴露和毒性:来那度胺在给孕妇使用时可能会对胎儿造成伤害。在器官形成期间给予来那度胺的猴子后代中观察到了肢体异常。在所有测试的剂量中都观察到了这种效应。由于这个发育猴子的研究结果,以及来那度胺与已知的人类致畸剂沙利度胺在结构上的相似性,来那度胺禁忌用于孕妇。来那度胺在接受了来那度胺和地塞米松治疗的多发性骨髓瘤患者中显示了显著增加深静脉血栓形成(DVT)和肺栓塞(PE)的风险,以及心肌梗死和中风的风险。在接受了来那度胺和地塞米松联合治疗的病人中,已经发生了肝衰竭,包括致命病例。在接受来那度胺治疗的研究中,包括美法仑和干细胞移植的多发性骨髓瘤患者与未接受来那度胺的对照臂患者相比,第二原发恶性肿瘤的发病率更高,特别是急性髓细胞性白血病(AML)和霍奇金淋巴瘤。来那度胺可能会导致显著的粒细胞减少和血小板减少。在接受来那度胺治疗期间,已经报道了致命的肿瘤溶解综合征病例。有高肿瘤负荷风险的患者在接受治疗之前就有肿瘤溶解综合征的风险。在接受来那度胺治疗的病人中已经报告了血管性水肿和严重的皮肤反应,包括史蒂文斯-约翰逊综合症和中毒性表皮坏死松解症。这些反应可能是致命的。动物研究:通过静脉和口服给药,急性给予大鼠和小鼠来那度胺并没有导致死亡。然而,连续口服4和6毫克/千克/天的剂量给猴子,持续最多20周,产生了死亡和显著的毒性。研究了来那度胺的胚胎毒性和致畸潜力在在老鼠、兔子和猴子。在大鼠中进行的一项产前和产后发育研究显示,母鼠在接受了最高500毫克/千克的来那度胺剂量后,其后代几乎没有不良反应。在兔子中,在口服3、10和20毫克/千克/天的母兔后代中,没有归因于来那度胺的肢体异常。在10和20毫克/千克/天的剂量水平上,发育毒性表现为胎儿体重略有减轻,着床后损失(早期和晚期吸收和宫内死亡)的发生率增加,以及与来那度胺的药理毒性效应(全身皮肤紫癜)相关的胎儿外部的宏观发现。在10和20毫克/千克/天的剂量下观察到了肺中间叶的缺失,并呈剂量依赖性,在20毫克/千克/天的剂量下观察到移位的肾脏。在10和20毫克/千克/天的胎儿中也观察到了软组织和骨骼变异。这些包括颅骨骨化(不规则鼻额缝)的微小变异和掌骨骨化的轻微延迟,这与减少的胎儿体重有关。在猴子中,在怀孕期间接受来那度胺剂量低至0.5毫克/千克/天的母猴的后代中观察到了畸形。观察到的畸形范围从0.5毫克/千克/天的来那度胺时的僵硬和轻微旋转的后肢,到4毫克/千克/天的来那度胺时的严重外部畸形,如弯曲、缩短、形状异常、旋转和/或缺失的部分肢体,寡指或多指。在细菌逆转突变试验(Ames试验)中,来那度胺不具有诱变性,也不诱导培养的人外周血淋巴细胞的染色体畸变,也不诱导小鼠淋巴瘤L5178Y细胞胸苷激酶(tk)位点的突变。来那度胺没有增加叙利亚仓鼠胚胎转化试验中的形态转化,也没有在大鼠骨髓中的多色红细胞中诱导微核。
IDENTIFICATION AND USE: Lenalidomide is off-white to pale-yellow solid powder. Lenalidomide, a thalidomide analog, is an immunomodulatory agent with antineoplastic and antiangiogenic activity. Lenalidomide is used for the treatment of patients with transfusion-dependent anemia due to low- or intermediate-1-risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities. It is also used for the treatment of patients with mantle cell lymphoma (MCL) whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib. It is used in combination with dexamethasone for the treatment of patients with multiple myeloma (MM) who have received at least one prior therapy. HUMAN EXPOSURE AND TOXICITY: Lenalidomide can cause fetal harm when administered to a pregnant female. Limb abnormalities were seen in the offspring of monkeys that were dosed with lenalidomide during organogenesis. This effect was seen at all doses tested. Due to the results of this developmental monkey study, and lenalidomide's structural similarities to thalidomide, a known human teratogen, lenalidomide is contraindicated in females who are pregnant. Lenalidomide has demonstrated a significantly increased risk of deep vein thrombosis (DVT) and pulmonary embolism (PE), as well as risk of myocardial infarction and stroke in patients with multiple myeloma who were treated with lenalidomide and dexamethasone therapy. Hepatic failure, including fatal cases, has occurred in patients treated with lenalidomide in combination with dexamethasone. Patients with multiple myeloma treated with lenalidomide in studies including melphalan and stem cell transplantation had a higher incidence of second primary malignancies, particularly acute myelogenous leukemia (AML) and Hodgkin lymphoma, compared to patients in the control arms who received similar therapy but did not receive lenalidomide. Lenalidomide can cause significant neutropenia and thrombocytopenia. Fatal instances of tumor lysis syndrome have been reported during treatment with lenalidomide. The patients at risk of tumor lysis syndrome are those with high tumor burden prior to treatment. Angioedema and serious dermatologic reactions, including Stevens-Johnson syndrome and toxic epidermal necrolysis, have been reported in lenalidomide-treated patients. These reactions can be fatal. ANIMAL STUDIES: Acute administration of lenalidomide to rats and mice via intravenous and oral administration did not result in mortality. However, repeated oral administration of 4 and 6 mg/kg/day to monkeys for up to 20 weeks produced mortality and significant toxicity. The embryotoxic and teratogenic potential of lenalidomide was studied in rats, rabbits and monkeys. A pre- and post-natal development study in rats revealed few adverse effects in the offspring of female rats treated with lenalidomide at doses up to 500 mg/kg. In rabbits, no limb abnormalities were attributable to lenalidomide in the offspring of females administered 3, 10 and 20 mg/kg/day orally. Developmental toxicity at the 10 and 20 mg/kg/day dose levels was characterized by slightly reduced fetal body weights, increased incidences of post implantation loss (early and late resorptions and intrauterine deaths), and gross external findings in the fetuses associated with morbidity and pharmacotoxic effects of lenalidomide (purple discoloration of the skin on the entire body). An absence of the intermediate lobe of the lung was observed at 10 and 20 mg/kg/day with dose dependence and displaced kidneys were observed at 20 mg/kg/day. Soft tissue and skeletal variations in the fetuses were also observed at 10 and 20 mg/kg/day. These included minor variations in skull ossification (irregular nasal-frontal suture) and small delays in ossification of the metacarpals, associated with the reduced fetal body weights. In monkeys, malformations were observed in the offspring of female monkeys who received lenalidomide doses as low as 0.5 mg/kg/day during pregnancy. The observed malformations ranged from stiff and slightly malrotated hindlimbs at 0.5 mg/kg/day of lenalidomide up to severe external malformations, such as bent, shortened, malformed, malrotated, and/or absent part of the extremities, oligo- or polydactyly at 4 mg/kg/day of lenalidomide. Lenalidomide was not mutagenic in the bacterial reverse mutation assay (Ames test) and did not induce chromosome aberrations in cultured human peripheral blood lymphocytes, or mutations at the thymidine kinase (tk) locus of mouse lymphoma L5178Y cells. Lenalidomide did not increase morphological transformation in Syrian Hamster Embryo assay or induce micronuclei in the polychromatic erythrocytes of the bone marrow of male rats.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 肝毒性
雷利度胺治疗的患者中,有8%到15%的患者出现血清酶升高,剂量越高,这种情况越常见。酶异常通常是轻微的,自限性的,很少需要停药。此外,雷利度胺还与罕见的、临床明显的急性肝损伤有关,这种损伤可能很严重,并已导致急性肝衰竭死亡。损伤的发生通常在开始治疗后的1到8周内。在呈现时,血清酶升高的模式可能是肝细胞型或胆汁淤积型;然而,损伤倾向于胆汁淤积型,并且可能持续较长时间。免疫过敏和自身免疫特征并不常见。在具有其他明显肝脏疾病原因的患者或原有慢性乙型或丙型肝炎的患者中,已发生与雷利度胺治疗相关的急性肝损伤的几个实例。如果在急性损伤期间进行肝活检,结果显示肝细胞坏死和炎症细胞浸润,与急性药物诱导的损伤一致。在某些情况下,还存在胆管损伤和丢失,导致进行性胆汁淤积性肝损伤,提示胆管消失综合征。雷利度胺还被证明能增加患有吉尔伯特综合症患者的间接胆红素水平,在治疗期间导致轻度高胆红素血症,停止治疗后很快就会缓解,并且通常是良性的。 沙利度胺及其衍生物也被认为在自体或异体造血干细胞移植(HSCT)后以及肝脏、肾脏和心脏移植后增加了移植物抗宿主病的风险。雷利度胺、泊马度胺和沙利度胺之间似乎存在对这种并发症的交叉反应。治疗通常需要停止使用抗肿瘤药物,并使用高剂量的皮质类固醇和他克莫司或西罗莫司。此外,肝移植物抗宿主病偶尔会表现为急性肝炎,类似于肝细胞药物诱导的肝损伤。 在接受沙利度胺、雷利度胺和泊马度胺治疗的病人中报告了乙型肝炎的再激活,但通常只在HSCT之后,这些药物在引起再激活方面的作用并不总是明确的。实际上,在对大量患有多发性骨髓瘤的患者进行研究时,发现再激活的主要风险因素是HSCT而不是正在使用的特定抗肿瘤药物。事实上,雷利度胺治疗与HSCT患者再激活风险降低有关(尽管地塞米松、沙利度胺和硼替佐米不是),这可能是由于雷利度胺通常引起的免疫增强。 可能性评分:C(可能的罕见临床明显肝损伤原因)。
Serum enzyme elevations occur in 8% to 15% of patients taking lenalidomide and are more frequent with higher doses. The enzyme abnormalities are usually mild and self-limited, and only rarely require drug discontinuation. In addition, lenalidomide has been implicated in rare instances of clinically apparent, acute liver injury which can be severe and has led to deaths from acute liver failure. The onset of injury is typically within 1 to 8 weeks of starting therapy. The pattern of serum enzyme elevation at the time of presentation can be either hepatocellular or cholestatic; however, the injury tends to be cholestatic and can be prolonged. Immunoallergic and autoimmune features are not common. Several instances of acute liver injury associated with lenalidomide therapy have occurred in patients with other apparent causes of liver disease or with preexisting chronic hepatitis B or C. If performed during the acute injury, liver biopsy shows hepatocellular necrosis and inflammatory cell infiltration, consistent with acute drug induced injury. In some instances there is bile duct injury and loss resulting in progressive cholestatic liver injury suggestive of vanishing bile duct syndrome. Lenalidomide has also been shown to increase indirect bilirubin levels in patients with underlying Gilbert syndrome, causing a mild hyperbilirubinemia during therapy that soon resolves with stopping treatment and is otherwise benign. Thalidomide and its derivatives have also been implicated in causing an increased risk of graft-vs-host disease after autologous or allogeneic hematopoietic stem cell transplantation (HSCT) as well as after liver, kidney and heart transplantation. There appears to be cross reactivity to this complication among lenalidomide, pomalidomide and thalidomide. Therapy usually requires discontinuation of the antineoplastic agent as well as treatment with high doses of corticosteroids and tacrolimus or sirolimus. Furthermore, hepatic graft-vs-host disease can occasionally present with an acute hepatitis that resembles hepatocellular drug induced liver injury. Reactivation of hepatitis B has been reported in patients receiving thalidomide, lenalidomide and pomalidomide, but generally only after HSCT and the role of these agents in causing reactivation is not always clear. Indeed, in studies of large numbers of patients treated for multiple myeloma, the major risk factor for reactivation was found to be HSCT rather than the specific antineoplastic drugs being used. Indeed, lenalidomide therapy is associated with a reduced risk of reactivation in patients with HSCT (although dexamethasone, thalidomide and bortezomib were not), perhaps because of the immune enhancement typically caused by lenalidomide. Likelihood score: C (probable rare cause of clinically apparent liver injury).
来源:LiverTox
毒理性
  • 药物性肝损伤
来那度胺
Compound:lenalidomide
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
DILI 注解:较少的药物性肝损伤关注
DILI Annotation:Less-DILI-Concern
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
严重性等级:3
Severity Grade:3
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
吸收、分配和排泄
  • 吸收
口服给药后,来那度胺迅速吸收,具有很高的生物利用度。其达峰时间(Tmax)为0.5至6小时。来那度胺表现出线性药代动力学特征,其曲线下面积(AUC)和峰浓度(Cmax)随剂量成比例增加。多次给药不会导致药物累积。在健康男性受试者中,峰浓度(Cmax)为413 ± 77 ng/ml,无限面积(AUCinfinity)为1319 ± 162 h x ng/ml。
Following oral administration, lenalidomide is rapidly absorbed with high bioavailability. It has a Tmax ranging from 0.5 to six hours. Lenalidomide exhibits a linear pharmacokinetic profile, with its AUC and Cmax increasing proportionally with dose. Multiple dosing does not result in drug accumulation. In healthy male subjects, the Cmax was 413 ± 77 ng/ml and the AUCinfinity was 1319 ± 162 h x ng/ml.
来源:DrugBank
吸收、分配和排泄
  • 消除途径
来那度胺主要通过尿液以原形排出。在健康受试者口服25毫克的放射性标记来那度胺后,大约90%的剂量(其中4.59%为代谢物)在尿液中排出,4%的剂量(其中1.83%为代谢物)在粪便中排出,这些都在服药后十天内发生。大约85%的剂量在24小时内以来那度胺的形式通过尿液排出。
Lenalidomide is eliminated predominantly via urinary excretion in the unchanged form. Following oral administration of 25 mg of radiolabeled lenalidomide in healthy subjects, about 90% of the dose (4.59% as metabolites) was eliminated in urine and 4% of the dose (1.83% as metabolites) was eliminated in feces within ten days post-dose. Approximately 85% of the dose was excreted as lenalidomide in the urine within 24 hours.
来源:DrugBank
吸收、分配和排泄
  • 分布容积
在健康的男性受试者中,表观分布容积为75.8 ± 7.3升。
In healthy male subjects, the apparent volume of distribution was 75.8 ± 7.3 L.
来源:DrugBank
吸收、分配和排泄
  • 清除
来那度胺的肾清除率超过了肾小球滤过率。在健康男性受试者中,口服清除率为318 ± 41 毫升/分钟。
The renal clearance of lenalidomide exceeds the glomerular filtration rate. In healthy male subjects, the oral clearance was 318 ± 41 mL/min.
来源:DrugBank
吸收、分配和排泄
体外(14)C-来那度胺与血浆蛋白的结合率大约为30%。
In vitro (14)C-lenalidomide binding to plasma proteins is approximately 30%.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    IRRITANT
  • 安全说明:
    S26,S36
  • 危险类别码:
    R20/21/22,R36/37/38
  • 海关编码:
    2925190090
  • WGK Germany:
    3
  • 危险品标志:
    Xi
  • 危险类别:
    IRRITANT
  • 危险性防范说明:
    P201,P202,P260,P280,P308+P313,P405,P501
  • 危险性描述:
    H361,H373
  • 储存条件:
    -20°C 冰箱

SDS

SDS:5418dbd20aa3f91b6fbdd60bba941cc6
查看

制备方法与用途

简介

在过去的十年中,来那度胺(又称雷利度胺)已被成功地用于治疗炎症性疾病和癌症。该药物的主要适应症包括:与地塞米松联合治疗多发性骨髓瘤(MM),以及作为接受过自体造血干细胞移植的MM后的维持治疗。然而,许多患者可能不知道它也可以用于肝细胞肝癌。

作用机制

来那度胺是一种免疫调节类药物,在体外研究中,该药有三种主要的作用:1)直接抗肿瘤作用;2)抑制血管生成;3)免疫调节。在体内,来那度胺通过抑制骨髓基质细胞的支持、抗血管生成和抗破骨作用以及免疫调节活性,诱导肿瘤细胞的凋亡。在分子水平上,来那度胺已被证明与泛素E3连接酶相互作用,并靶向该酶降解Ikaros转录因子IKZF1和IKZF3。

抗肿瘤药物

来那度胺是由美国Celgene生物制药公司开发的一种抗肿瘤药物,其化学结构类似于沙利度胺。它具有抗肿瘤、免疫调节和抗血管生成等多重作用。体外试验显示本品可抑制某些细胞株如Namalwa细胞的增生,并且可以抑制患者多发性骨髓瘤细胞及MM1S细胞的生长。此外,来那度胺还可抑制环氧化酶2(COX-2)的表达,但对COX-1无作用。

多项临床研究评估了来那度胺用于治疗多发性骨髓瘤的安全性和疗效。中期分析显示,联合用药组的疾病进展时间(TTP)显著优于地塞米松单药组。进一步的研究还表明,来那度胺具有广泛的抗肿瘤活性,可抑制免疫抑制配体表达并防止T细胞裂解功能障碍。

靶点
  • CRBN:与Thalidomide结合野生型CRBN的HEK293 T细胞相比,Pomalidomide调节c-myc和IRF4表达降低、p21(WAF-1) 表达增高。
  • VEGF:抗Lenalidomide的选择性与CRBN降低相关。
  • TNF-α:在PBMCs中,其值为13 nM。
体外研究

CC-5013强诱导IL-2和sIL-2R产量。它作用于T细胞,诱导CD28的酪氨酸磷酸化,并随后下调NF-κB的激活。Lenalidomide和Pomalidomide在表达与Thalidomide结合野生型CRBN而非缺陷型CRBN(YW/AA)的HEK293 T细胞中抑制CRBN自体泛素化。此外,它在KMS12多发性骨髓瘤细胞中放大了Pomalidomide调节的c-myc和IRF4表达降低以及p21(WAF-1) 表达增高。在H929 多发性骨髓瘤细胞系中长期抗Lenalidomide的选择性与CRBN降低相关,而抗Pomalidomide 和 Lenalidomide的DF15R多发性骨髓瘤检测不到CRBN蛋白。

体内研究

口服处理来那度胺显著抑制bFGF诱导的血管生成。在不同剂量(50 mg/kg和250 mg/kg)下,该药物明显降低了血管面积百分数以及MVL(微血管密度)。这表明来那度胺具有良好的抗肿瘤作用,并且其效果随剂量增加而增强。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

反应信息

  • 作为反应物:
    描述:
    来那度胺 在 bis(cyclopentadienyl)dihydrozirconium 、 频那醇硼烷盐酸 作用下, 以 二氯甲烷乙醚 为溶剂, 20.0 ℃ 、101.33 kPa 条件下, 反应 16.0h, 以95%的产率得到4-amino-2-(piperidin-3-yl)isoindol-1-one hydrochloride
    参考文献:
    名称:
    一种酰胺化合物还原制备胺类化合物的方法
    摘要:
    本发明涉及一种酰胺化合物还原制备胺类化合物的方法,该方法是指在保护气氛中,将酰胺类化合物或环状酰胺、锆金属催化剂、频哪醇硼烷混合,于室温条件下进行酰胺还原反应,12~48h后通过氯化氢的乙醚溶液后处理,即得胺的盐酸盐化合物。本发明操作简单、成本低且具有良好的官能团耐受性和广泛的底物范围。
    公开号:
    CN112299938A
  • 作为产物:
    描述:
    2-[4-(N-benzyloxycarbonyl)amino-1,3-dihydro-1-oxo-2H-isoindol-2-yl]glutaramide 在 5% Pd(II)/C(eggshell) N,N-二甲基甲酰胺 作用下, 以 N,N-二甲基甲酰胺甲醇 为溶剂, 反应 2.0h, 以72%的产率得到来那度胺
    参考文献:
    名称:
    [EN] METHODS FOR SYNTHESIZING 3-(SUBSTITUTED DIHYDROISOINDOLINONE-2-YL)-2,6-DIOXOPIPERIDINE, AND INTERMEDIATES THEREOF
    [FR] PROCÉDÉS POUR LA SYNTHÈSE DE 3-[(DIHYDROISOINDOLINONE SUBSTITUÉE)-2-YL]-2,6-DIOXOPIPÉRIDINE ET INTERMÉDIAIRES CORRESPONDANTS
    摘要:
    本发明揭示了合成3-(取代二氢异吲哚酮-2-基)-2,6-二氧代哌啶及其中间体的方法,即合成式(I)化合物的方法,其中每个取代基固定在专利规范中定义。由于高生产率、对环境影响小和材料易得的优点,本发明的方法适用于工业生产。
    公开号:
    WO2010139266A1
  • 作为试剂:
    描述:
    来那度胺盐酸盐三乙胺来那度胺甲醇 作用下, 以 甲醇 为溶剂, 生成 来那度胺
    参考文献:
    名称:
    PROCESS
    摘要:
    本发明涉及改进的制备3-(4-氨基-1-氧代-1,3-二氢异萘并[2,3-d]吡咯-2-基)-哌嗪-2,6-二酮(I)(来那度胺)及其中间体3-(1-氧代-4-硝基-1,3-二氢异萘并[2,3-d]吡咯-2-基)-哌嗪-2,6-二酮的方法。本发明还涉及改进的制备来那度胺A晶体形式的方法,以所述晶体形式A作为活性药物成分或作为制备进一步的晶体或非晶态形式的来那度胺的中间体,包含来那度胺A晶体形式的组合物及其在治疗疾病中的应用。
    公开号:
    US20120071509A1
点击查看最新优质反应信息

文献信息

  • IRAK DEGRADERS AND USES THEREOF
    申请人:Kymera Therapeutics, Inc.
    公开号:US20190192668A1
    公开(公告)日:2019-06-27
    The present invention provides compounds, compositions thereof, and methods of using the same.
    本发明提供了化合物、其组合物以及使用这些化合物的方法。
  • 基于来那度胺靶向降解EGFR蛋白小分子化合物及其制备与应用
    申请人:浙江工业大学
    公开号:CN111574498A
    公开(公告)日:2020-08-25
    本发明为基于来那度胺靶向降解EGFR蛋白小分子化合物及其制备与应用,提供了一种式(I)所示的靶向泛素化诱导EGFR蛋白降解的化合物及其制备方法与应用,本发明基于来那度胺设计具有靶向EGFR蛋白降解嵌合小分子,体外抗肿瘤活性测试及体外EGFR蛋白降解活性表明,所述化合物表现出了良好的抗肿瘤活性和EGFR蛋白降解水平,可用于预防或/和治疗多种癌症,在医药领域具有良好的应用前景;
  • 一种GPX4蛋白降解剂及其制备方法和应用、一种抗肿瘤细胞药物
    申请人:北京大学
    公开号:CN113336748B
    公开(公告)日:2022-03-25
    本发明提供了一种GPX4蛋白降解剂及其制备方法和一种抗肿瘤细胞药物,属于药物应用技术领域。本发明提供的GPX4蛋白降解剂具有蛋白降解靶向嵌合体(PROTAC)分子结构,其母核结构作为结合靶蛋白的小分子配体,A2取代基作为结合E3泛素连接酶复合物的小分子配体,A1取代基作为将两个配体连接起来连接基,此结构的GPX4蛋白降解剂能够特异性识别GPX4蛋白,并将GPX4蛋白有效泛素化并降解,从而诱导肿瘤细胞铁死亡。
  • Development of small-molecule BRD4 degraders based on pyrrolopyridone derivative
    作者:Jian Zhang、Pan Chen、Peiyu Zhu、Peiyuan Zheng、Tao Wang、Lixun Wang、Changliang Xu、Jinpei Zhou、Huibin Zhang
    DOI:10.1016/j.bioorg.2020.103817
    日期:2020.6
    of traditional small-molecule drugs. Based on PROTACs approaches, several BRD4 degraders were developed and have been proved to degrade BRD4 protein and inhibit tumor growth. Herein, we present the design, synthesis, and biological evaluation of pyrrolopyridone derivative-based BRD4 degraders. Four synthesized compounds displayed comparative potence against BRD4 BD1 with IC50 at low nanomolar concentrations
    含溴结构域的蛋白质4(BRD4)在基因转录的表观遗传调控中起着至关重要的作用,一些BRD4抑制剂已被推进临床试验。但是,BRD4抑制剂的临床应用可能会受到耐药性的限制。作为一种替代策略,新兴的靶向靶向嵌合体蛋白水解(PROTAC)技术具有克服传统小分子药物耐药性的潜力。基于PROTACs方法,开发了几种BRD4降解物,并已证明它们可降解BRD4蛋白并抑制肿瘤生长。本文中,我们介绍了基于吡咯并吡啶酮衍生物的BRD4降解物的设计,合成和生物学评估。四种合成的化合物在低纳摩尔浓度下对IC50的BRD4 BD1表现出相对的效力。与BRD4抑制剂ABBV-075相比,32a对BxPC3细胞系(IC50 = 0.165μM)的抗增殖活性提高了约7倍。此外,降解物32a以时间依赖性方式有效诱导BRD4的降解并抑制BxPC3细胞系中c-Myc的表达。对细胞内抗肿瘤机制的探索显示了32a诱导的细胞周期阻滞和
  • Discovery of a new class of PROTAC BRD4 degraders based on a dihydroquinazolinone derivative and lenalidomide/pomalidomide
    作者:Fangqing Zhang、Zhenwei Wu、Pan Chen、Jian Zhang、Tao Wang、Jinpei Zhou、Huibin Zhang
    DOI:10.1016/j.bmc.2019.115228
    日期:2020.1
    target BRD4 recently. Herein, we present our design, synthesis and biological evaluation of a new class of PROTAC BRD4 degraders, which were based on a potent dihydroquinazolinone-based BRD4 inhibitor compound 6 and lenalidomide/pomalidomide as ligand for E3 ligase cereblon. Gratifyingly, several compounds showed excellent inhibitory activity against BRD4, and high anti-proliferative potency against human
    BRD4已成为抗癌治疗的诱人靶标。但是,BRD4抑制剂的治疗会导致BRD4蛋白质积聚,以及抑制剂与BRD4结合的可逆性,这可能会限制BRD4抑制剂的功效。为了解决这些问题,最近已经开发了基于蛋白水解靶向嵌合体(PROTAC)技术的蛋白质降解策略来靶向BRD4。本文中,我们介绍了新型PROTAC BRD4降解剂的设计,合成和生物学评估,该降解剂基于有效的基于二氢喹唑啉酮的BRD4抑制剂化合物6和来那度胺/泊马来度胺作为E3连接酶脑的配体。令人欣慰的是,几种化合物对BRD4表现出优异的抑制活性,并且对人单核细胞淋巴瘤细胞系THP-1具有很高的抗增殖能力。尤其,化合物21(BRD4 BD1,IC50 = 41.8 nM)在抑制THP-1细胞系生长方面实现了亚微摩尔IC50值为0.81μM,并且是化合物6的4倍。诱导BRD4蛋白降解并抑制c-Myc。所有这些结果表明21是有效的BRD4降解物,需要进一步研究。
查看更多

同类化合物

(1Z,3Z)-1,3-双[[((4S)-4,5-二氢-4-苯基-2-恶唑基]亚甲基]-2,3-二氢-5,6-二甲基-1H-异吲哚 鲁拉西酮杂质33 鲁拉西酮杂质07 马吲哚 颜料黄110 顺式-六氢异吲哚盐酸盐 顺式-2-[(1,3-二氢-1,3-二氧代-2H-异吲哚-2-基)甲基]-N-乙基-1-苯基环丙烷甲酰胺 顺-N-(4-氯丁烯基)邻苯二甲酰亚胺 降莰烷-2,3-二甲酰亚胺 降冰片烯-2,3-二羧基亚胺基对硝基苄基碳酸酯 降冰片烯-2,3-二羧基亚胺基叔丁基碳酸酯 阿胍诺定 阿普斯特降解杂质 阿普斯特杂质29 阿普斯特杂质27 阿普斯特杂质26 阿普斯特杂质 阿普斯特 防焦剂MTP 铝酞菁 铁(II)2,9,16,23-四氨基酞菁 酞酰亚胺-15N钾盐 酞菁锡 酞菁二氯化硅 酞菁 单氯化镓(III) 盐 酞美普林 邻苯二甲酸亚胺 邻苯二甲酰基氨氯地平 邻苯二甲酰亚胺,N-((吗啉)甲基) 邻苯二甲酰亚胺阴离子 邻苯二甲酰亚胺钾盐 邻苯二甲酰亚胺钠盐 邻苯二甲酰亚胺观盐 邻苯二亚胺甲基磷酸二乙酯 那伏莫德 过氧化氢,2,5-二氢-5-苯基-3H-咪唑并[2,1-a]异吲哚-5-基 达格吡酮 诺非卡尼 螺[环丙烷-1,1'-异二氢吲哚]-3'-酮 螺[异吲哚啉-1,4'-哌啶]-3-酮盐酸盐 葡聚糖凝胶G-25 苹果酸钠 苯酚,4-溴-3-[(1-甲基肼基)甲基]-,1-苯磺酸酯 苯胺,4-乙基-N-羟基-N-亚硝基- 苯基甲基2-脱氧-2-(1,3-二氢-1,3-二氧代-2H-异吲哚-2-基)-3-O-(苯基甲基)-4,6-O-[(R)-苯基亚甲基]-BETA-D-吡喃葡萄糖苷 苯二酰亚氨乙醛二乙基乙缩醛 苯二甲酰亚氨基乙醛 苯二(甲)酰亚氨基甲基磷酸酯 膦酸,[[2-(1,3-二氢-1,3-二羰基-2H-异吲哚-2-基)苯基]甲基]-,二乙基酯 胺菊酯