摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,3-丁二烯 | 106-99-0

中文名称
1,3-丁二烯
中文别名
丁二烯;1,3-丁二烯;1,3-丁二烯;联乙烯;二乙烯;丁间二烯;乙烯基乙烯
英文名称
buta-1,3-diene
英文别名
1,3-butadiene;butadiene-1,3;butadien;butadiene
1,3-丁二烯化学式
CAS
106-99-0
化学式
C4H6
mdl
——
分子量
54.0916
InChiKey
KAKZBPTYRLMSJV-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    −109 °C(lit.)
  • 沸点:
    −4.5 °C(lit.)
  • 密度:
    0.62 g/mL at 20 °C(lit.)
  • 蒸气密度:
    1.9 (15 °C, vs air)
  • 闪点:
    −105 °F
  • 溶解度:
    水: 20°C时可溶0.5g/L
  • 暴露限值:
    TLV-TWA 10 ppm (~22 mg/m3) (ACGIH), 1000 ppm (OSHA and NIOSH); IDLH 20,000 ppm (NIOSH); A2–Suspected Human Carcinogen (ACGIH).
  • LogP:
    1.99 at 20℃
  • 物理描述:
    Colorless gas with a mild aromatic or gasoline-like odor. [Note: A liquid below 24°F. Shipped as a liquefied compressed gas.]
  • 颜色/状态:
    Colorless gas ... [Note: A liquid below 24 degrees F. Shipped as a liquefied compressed gas]
  • 气味:
    MIldly aromatic odor
  • 蒸汽密度:
    1.87 (NTP, 1992) (Relative to Air)
  • 蒸汽压力:
    273.6 kPa (2,052 mm Hg) at 25 °C
  • 大气OH速率常数:
    6.66e-11 cm3/molecule*sec
  • 稳定性/保质期:
    1. 本品毒性较小,其毒性与乙烯类似,但对皮肤和黏膜的刺激较强。在高浓度时具有麻醉作用。动物吸入0.67%浓度的丁二烯,每天接触7.5小时,持续8个月后,通常不会显著影响生长和健康状况。工作场所最高容许浓度为2200 mg/m³。液态丁二烯因低温可导致冻伤。因此应确保生产设备密封,避免跑、冒、滴、漏,并注意防火防热。

    2. 丁二烯极易燃烧。尽管相对无毒,但有疑虑可能属于致癌物质。它对呼吸道具有强烈的刺激作用,并且容易发生聚合反应,需避免使用引发剂。在实验室中通常将1,3-丁二烯直接冷凝气体或形成饱和溶液来使用;对于更高温度的反应,则应使用封试管以防止泄漏。

    3. 稳定性:丁二烯较为稳定。

    4. 禁配物:强氧化剂、卤素、氧、、酸类。

    5. 应避免接触的条件:高温和光照。

    6. 聚合危害:可能发生聚合反应。

  • 自燃温度:
    788 °F (420 °C)
  • 分解:
    May decompose explosively when heated above 200 °C/ 1 kbar. ... When heated to decomposition it emits acrid smoke and fumes.
  • 粘度:
    Gas at 101.325 kPa at 20 °C: 0.00754 cP; Liquid at -40 °C: 0.33 cP
  • 腐蚀性:
    Non-corrosive
  • 燃烧热:
    -2541.5 kJ/mol (gas)
  • 汽化热:
    20.86 kJ/mol 25 °C; 22.47 kJ/mol at -4.41 °C
  • 表面张力:
    13.4 dynes/cm at 20 °C
  • 电离电位:
    9.07 eV
  • 聚合:
    POLYMERIZES & COPOLYMERIZES EASILY, EG,UNDER INFLUENCE OF SODIUM ...
  • 气味阈值:
    4 MG/CU M
  • 折光率:
    Index of refraction: 1.4292 at 25 °C
  • 相对蒸发率:
    Greater than 25 (butyl acetate = 1)
  • 保留指数:
    403;395;395;393;395;394.3;397;405;394;395;395;389;396;390;392;393;398;395;412

计算性质

  • 辛醇/水分配系数(LogP):
    2
  • 重原子数:
    4
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

代谢
1,3-丁二烯已经确定了多种暴露生物标志物;这些包括1,3-丁二烯的尿液代谢物M1和M2,以及三种血红蛋白加合物,N-(2-羟基-3-丁烯基)缬酸(MHB-Val)、N-(2,3,4-三羟基丁基)缬酸(THB-Val)和N,N-(2,3-二羟基-1,4-丁二烯基)缬酸(pyr-Val),它们分别是1,3-丁二烯代谢物1,2环氧-3-丁烯(EB)、1,2-二羟基-3,4-环氧丁烷(EBD)和1,2:3,4-二环氧丁烷(DEB)的替代生物标志物。在工人中,尿液代谢物和血红蛋白加合物的平已经显示出与1,3-丁二烯暴露平相关。然而,对于普通人群来说,这些暴露生物标志物的背景平尚未建立。
Several biomarkers of exposure have been identified for 1,3-butadiene; these include 1,3-butadiene urinary metabolites, M1 and M2, and three hemoglobin adducts, N-(2-hydroxy-3-butenyl)valine (MHB-Val), N-(2,3,4-trihydroxybutyl)valine (THB-Val), and N,N-(2,3-dihyroxy-1,4-butadyl)valine (pyr-Val), which are surrogate biomarkers for the 1,3-butadiene metabolites 1,2 epoxy-3-butene (EB), 1,2-dihydroxy-3,4-epoxybutane (EBD), and 1,2:3,4-diepoxybutane (DEB), respectively. In workers, the levels of urinary metabolites and hemoglobin adducts have been shown to correlate with 1,3-butadiene exposure levels. However, background levels for the general population have not been established for these biomarkers of exposure.
来源:Hazardous Substances Data Bank (HSDB)
代谢
1,3-丁二烯需要代谢激活以生成电亲和性的环氧物,其中存在重要的物种差异(小鼠在产生丁二烯的环氧代谢物方面更为高效,而大鼠和人类在将这些代谢物解解毒方面更为高效)。
1,3-butadiene requires metabolic activation to generate electrophilic epoxides in which important species differences exist (mice are more efficient in the production of epoxide metabolites of butadiene, while rats and humans are more efficient in the hydrolytic detoxification of these metabolites).
来源:Hazardous Substances Data Bank (HSDB)
代谢
在大鼠肝脏微粒体中,1,3-丁二烯被代谢成丁二烯单氧,随后通过微粒体环氧化酶被转化为3-丁烯-1,2-二醇。在微粒体中代谢丁二烯单氧时,检测到了四种代谢物,即DL-二环氧丁烷的两个对映异构体和3,4-环氧-1,2-丁二醇的两个对映异构体。没有检测到内消旋二环氧丁烷
In rat liver microsomes, 1,3-butadiene was metabolized to butadiene monoxide, which was subsequently transformed into 3-butene-1,2-diol by microsomal epoxide hydrolase. In the metabolism of butadiene oxide in microsomes, four metabolites were detected, namely two stereoisomers of DL-diepoxybutane, and two stereoisomers of 3,4-epoxy-1,2-butanediol. No meso-diepoxybutane was detected.
来源:Hazardous Substances Data Bank (HSDB)
代谢
1,3-丁二烯在大鼠肝脏微粒体中与NADPH生成系统一起孵化。丁二烯的主要代谢物之一是1,2-环氧丁烯-3。
1,3-Butadiene was incubated in the presence of rat liver microsomes supplemented with an NADPH-generating system. One of the major metabolites of butadiene was 1,2-epoxybutene-3.
来源:Hazardous Substances Data Bank (HSDB)
代谢
丁二烯已知的人类代谢物包括丁二烯单氧化物和3-丁烯-2-酮。
Butadiene has known human metabolites that include butadiene_monoxide and 3-buten-2-one.
来源:NORMAN Suspect List Exchange
毒理性
  • 毒性总结
识别和使用:1,3-丁二烯是不完全燃烧的结果,来源于自然过程和人类活动。它也是一种工业化学品,用于生产聚合物、聚丁二烯苯乙烯-丁二烯橡胶和乳胶以及腈-丁二烯橡胶。人类暴露和毒性:1,3-丁二烯可以通过空气的置换导致窒息。在职业环境中暴露于这种化学物质与白血病的关联已经得到了很好的证实。在迄今为止进行的最大型、最全面的研究中,涉及多个工厂的工人队列,苯乙烯-丁二烯工业中由于白血病导致的死亡率随着估计的累积暴露于1,3-丁二烯而增加;在控制了苯乙烯和苯的暴露之后,这种关联仍然存在,并且在那些潜在暴露最高的亚组中关联性最强。在对大量同一工人人群进行的独立进行的病例对照研究中,也观察到了1,3-丁二烯与白血病之间的关联。然而,在未同时暴露于苯乙烯-丁二烯橡胶工业中存在的其他一些物质的单体丁二烯生产工人中,并未观察到白血病死亡率的增加,尽管在某些亚组中有限地证据表明与淋巴肉瘤和网状肉瘤的死亡率有关联。还有有限的证据表明,1,3-丁二烯在职业暴露人群中具有人类遗传毒性,能在体细胞中诱导突变和染色体损伤。动物研究:1,3-丁二烯的代谢在物种间似乎是定性的相似,尽管在形成假定有毒代谢物的量上存在定量差异;小鼠似乎比人类更倾向于将1,3-丁二烯氧化为单环氧化物,随后进一步氧化为二环氧化代谢物。这种化学物质在实验动物中具有较低的急性毒性。长期暴露于1,3-丁二烯与小鼠卵巢萎缩的发展有关。在高于与雌性效应相关浓度的条件下,也观察到了雄性小鼠的睾丸萎缩。根据有限可用的数据,没有确凿的证据表明1,3-丁二烯在实验动物中通过母体或父体暴露具有致畸性,或者在低于对母体有毒的浓度下引起显著的胎儿毒性。1,3-丁二烯还诱导了小鼠血液和骨髓的多种效应;尽管数据有限,但在大鼠中并未观察到类似效应。吸入的1,3-丁二烯在小鼠中是一种强致癌物,在所有检测到的研究中,所有测试的浓度下都在多个位点诱导肿瘤。在唯一的相关研究中,1,3-丁二烯在所有暴露平下对大鼠也是致癌的;尽管在大鼠中测试的浓度远高于小鼠,但根据肿瘤发生率数据的比较,大鼠似乎是对该物质不太敏感的物种。1,3-丁二烯在大小鼠的体细胞中具有诱变性,其诱变效力在大小鼠中较在大鼠中更强。1,3-丁二烯诱导了小鼠体细胞的其它遗传损伤,但在大鼠体细胞中则没有。这种化学物质在小鼠的生殖细胞中也一致表现出遗传毒性。在经吸入暴露于这种致肿瘤剂的小鼠中没有检测到持久的免疫学缺陷。生态毒性研究:在10,000 ppm的1,3-丁二烯暴露下,豆科植物表现出比对照组高出18%的叶柄脱落。在1 ppm的浓度下没有观察到效果,而暴露于10、100和1000 ppm的剂量分别增加了2、5和8%的脱落。
IDENTIFICATION AND USE: 1,3-Butadiene is a product of incomplete combustion resulting from natural processes and human activity. It is also an industrial chemical used in the production of polymers, polybutadiene, styrene-butadiene rubbers and lattices and nitrile-butadiene rubbers. HUMAN EXPOSURE AND TOXICITY: 1,3-Butadiene can asphyxiate by the displacement of air. An association between exposure to this chemical in the occupational environment and leukemia has been well established. In the largest and most comprehensive study conducted to this date, involving a cohort of workers in multiple plants, mortality due to leukemia increased with estimated cumulative exposure to 1,3-butadiene in styrene-butadiene industry; this association remained after controlling for exposure to styrene and benzene and was strongest in those subgroups with highest potential exposure. An association between 1,3-butadiene and leukemia was observed in an independently conducted case-control study of largely the same population of workers. However, there was no increase in mortality due to leukemia in butadiene monomer production workers who were not concomitantly exposed to some of the other substances present in the styrene-butadiene rubber industry, although there was some limited evidence of an association with mortality due to lymphosarcoma and reticulosarcoma in some subgroups. There is also limited evidence from occupationally exposed populations that 1,3-butadiene is genotoxic in humans, inducing mutagenic and clastogenic damage in somatic cells. ANIMAL STUDIES: Metabolism of 1,3-butadiene appears to be qualitatively similar across species, although there are quantitative differences in the amounts of putatively toxic metabolites formed; mice appear to oxidize 1,3-butadiene to the monoepoxide, and subsequently the diepoxide metabolite to a greater extent than humans. This chemical is of low acute toxicity in experimental animals. Longterm exposure to 1,3-butadiene was associated with the development of ovarian atrophy in mice. Atrophy of the testes was also observed in male mice at greater concentrations than those associated with effects in females. Based on limited available data, there is no conclusive evidence that 1,3-butadiene is teratogenic in experimental animals following maternal or paternal exposure or that it induces significant fetal toxicity at concentrations below those that are maternally toxic. 1,3-Butadiene also induced a variety of effects on the blood and bone marrow of mice; although data are limited, similar effects have not been observed in rats. Inhaled 1,3-butadiene is a potent carcinogen in mice, inducing tumors at multiple sites at all concentrations tested in all identified studies. 1,3-Butadiene was also carcinogenic in rats at all exposure levels in the only relevant study available; although only much higher concentrations were tested in rats than in mice, rats appear to be the less sensitive species, based on comparison of tumor incidence data. 1,3-Butadiene is mutagenic in somatic cells of both mice and rats, the mutagenic potency was greater in mice than rats. 1,3-Butadiene induced other genetic damage in somatic cells of mice, but not in those of rats. This chemical was also consistently genotoxic in germ cells of mice. No persistent immunology defects were detectable after inhalation exposure to this tumorigenic agent in mice. ECOTOXICITY STUDIES: Bean plants exposed to 1,3-butadiene at 10,000 ppm exhibited an 18% increase in petiole abscission as compared to controls. No effect was observed at a concn of 1 ppm, and while exposure to 10, 100, and 1000 ppm doses increased abscissions 2, 5, and 8%, respectively.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
1,3-丁二烯的某些代谢物已被证明能与DNA和核蛋白结合,形成蛋白质-DNA和DNA-DNA交联。特别是,1,2-环氧丁烯-3和二环氧丁烷会与鸟嘌呤反应,导致交联。(L990, A293)
Certain metabolites of 1,3-butadiene have been shown to bind to DNA and nucleoproteins, forming protein-DNA and DNA-DNA crosslinks. Specifically, 1,2-epoxybutene-3 and diepoxybutane react with guanine to cause crosslinking. (L990, A293)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌性证据
评估 - 1,3-丁二烯 对于1,3-丁二烯对人类的致癌性有足够的证据。1,3-丁二烯会导致造血淋巴器官的癌症。对于1,3-丁二烯对实验动物的致癌性也有足够的证据。在小鼠中,1,3-丁二烯会导致造血系统(淋巴瘤和网状细胞肉瘤)、心脏(血管肉瘤)、肺、前胃、哈德氏腺、包皮腺、肝脏、乳腺、卵巢和皮肤的肿瘤。对于D,L-环氧丁烷对实验动物的致癌性也有足够的证据。D,L-环氧丁烷会在大鼠中引起皮肤肿瘤。有强烈证据表明,1,3-丁二烯在人类中的致癌性是通过一种涉及形成活性环氧、这些直接作用的致突变环氧与DNA相互作用并导致突变性的基因毒性机制。1,3-丁二烯在实验动物中的代谢途径也在人类中被发现。总体评估 1,3-丁二烯对人类是致癌的(1组)
Evaluation - 1,3-Butadiene There is sufficient evidence in humans for the carcinogenicity of 1,3-butadiene. 1,3-Butadiene causes cancer of the hematolymphatic organs. There is sufficient evidence in experimental animals for the carcinogenicity of 1,3-butadiene. In mice, 1,3-butadiene causes tumors of the hematopoietic system (lymphoma and histiocytic sarcoma), heart (hemangiosarcoma), lung, forestomach, Harderian gland, preputial gland, liver, mammary gland, ovary, and skin. There is sufficient evidence in experimental animals for the carcinogenicity of D,L-diepoxybutane. D,L-Diepoxybutane causes skin tumours in rats. There is strong evidence that the carcinogenicity of 1,3-butadiene in humans operates by a genotoxic mechanism that involves formation of reactive epoxides, interaction of these direct-acting mutagenic epoxides with DNA, and resultant mutagenicity. The metabolic pathways for 1,3-butadiene metabolism in experimental animals have also been shown in humans. Overall Evaluation 1,3-Butadiene is carcinogenic to humans (Group 1)
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
分类:B2;可能的人类致癌物。分类依据:人类数据不足,但已有足够的啮齿类动物(小鼠和大鼠)研究,这些研究中暴露于1,3-丁二烯的空气浓度导致了多种肿瘤和肿瘤类型,这是分类的基础。相关化合物具有致癌性和致突变性。人类致癌性数据:不足。动物致癌性数据:充分。
CLASSIFICATION: B2; probable human carcinogen. BASIS FOR CLASSIFICATION: Inadequate human data and sufficient rodent (mouse and rat) studies in which exposure to airborne concentrations of 1,3-butadiene caused multiple tumors and tumor types form the basis for this classification. Related compounds are carcinogenic and mutagenic. HUMAN CARCINOGENICITY DATA: Inadequate. ANIMAL CARCINOGENICITY DATA: Sufficient.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
A2; 怀疑的人类致癌物。
A2; Suspected human carcinogen.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
Sprague Dawley雄性大鼠和B6C3F1小鼠通过吸入(仅鼻子)暴露于空气中的1220和121微克(14)C-1,3-丁二烯/升,分别持续3.4小时。对于大鼠和小鼠,丁二烯的消除是迅速的,77%到99%的初始组织负荷在半衰期为2到10小时的时间内被消除。
Male Sprague Dawley rats and B6C3F1 mice were exposed by inhalation (nose-only) for 3.4 hr to 1220 and 121 ug (14)C-1,3-butadiene/L of air, respectively. For rats and mice, elimination of butadiene was rapid with 77 to 99% of the initial tissue burden being eliminated with half-times of 2 to 10 hr.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
Sprague Dawley雄性大鼠和B6C3F1小鼠通过吸入(仅鼻子)暴露于空气中的1220和121微克(14)C-1,3-丁二烯3.4小时。在两种物种中,高浓度的放射性物质在暴露后1小时内分布到呼吸道组织(肺、气管、鼻甲)、消化道(小肠和大肠)、肝脏、肾脏、膀胱和胰腺。小鼠的组织中含有比大鼠组织多15到100倍的(14)C-丁二烯当量/摩尔吸入的丁二烯。暴露后1小时,所有大鼠组织保留了大量与挥发性物质相关的(14)C,可能是丁二烯和/或代谢物;对于小鼠肝脏(此时研究的唯一组织)也是如此。在大鼠和小鼠之间,特定组织的积累或从组织中消除的速率没有差异。小鼠的组织中含有显著更高浓度的(14)C-丁二烯每摩尔吸入,这显然是由于小鼠的每公斤体重分钟通气量更高。在暴露后一小时内组织中大量的非挥发性物质表明丁二烯在吸入后迅速被代谢。
Male Sprague Dawley rats and B6C3F1 mice were exposed by inhalation (nose-only) for 3.4 hr to 1220 and 121 ug (14)C-1,3-butadiene/l of air, respectively. In both species, high concentrations of radioactivity were distributed to respiratory tract tissue (lung, trachea, nasal turbinates), gastrointestinal tract (small and large intestine), liver, kidneys, urinary bladder, and pancreas within 1 hr after exposure. Tissues of mice contained 15 to 100 times more (14)C-butadiene equivalents/umole of butadiene inhaled than rat tissues. One hr after exposure all rat tissues retained a substantial amount of (14)C that was associated with volatile material, probably butadiene and/or metabolites; this was also true for mouse liver (the only tissue studied at this time). There were no differences in rats and mice in terms of specific tissue accumulation or rate of elimination from tissues. The tissues of mice contained significantly higher concentrations of (14)C-butadiene per umole inhaled apparently due to the higher minute volume/kg of body weight of mice. The large amounts of nonvolatile material in tissues within one hr of exposure indicate that butadiene is rapidly metabolized following inhalation.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
...对1,3-丁二烯的药代动力学进行了研究,实验采用封闭式吸入室系统,在雄性斯普拉格-道利大鼠中进行。当使用未经处理的大鼠时,1,3-丁二烯表现出可饱和的代谢。在暴露浓度低于... 1500 ppm时,药代动力学呈线性关系。预先用艾罗1254(多联苯)处理,可以增加Vmax(最大代谢速率)。...当大鼠预先用艾罗1254处理后,即使在高达12,000 ppm的暴露浓度下,也未观察到代谢能力的饱和。与之前对乙烷正戊烷的研究相比,向饱和脂肪烃中引入双键似乎可以增加体内条件下的代谢速率。
The pharmacokinetics of ... 1,3-butadiene ... were studied in male Spraque-Dawley rats by use of a closed inhalation chamber system. 1,3-Butadiene showed saturable metabolism when untreated rats were used. Linear pharmacokinetics applied at exposure concn below ... 1500 ppm. Pretreatment with arochlor 1254 (polychlorinated biphenyls) increased Vmax. ... No saturation of metabolic capacity was observed with exposure concentrations up to 12,000 ppm when rats were pretreated with arochlor 1254. A comparison with previous studies on ethane and n-pentane suggested that introduction of a double bond into a saturated aliphatic hydrocarbon increased the rate of metabolism under conditions in vivo.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
1,3-丁二烯与新鲜血样达到平衡时的分布系数(0.603)与呼吸25%浓度的1,3-丁二烯的动物测量计算出的分布系数(0.645)非常相似。... 吸入空气进入血液的过程是简单的扩散,从肺泡进入并溶解于血液中。
The distribution coefficient found when 1,3-butadiene was equilibrated with fresh blood samples (0.603) was quite similar to that calculated from measurements in animals breathing a 25% concentration of 1,3-butadiene (0.645). ... The movement of inspired air into the blood is a process of simple diffusion from alveoli and solution into blood.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
大鼠接触蒸汽浓度50%致死率表明,体脂可能是1,3-丁二烯的储存库,因为肾周脂肪中含有的1,3-丁二烯是大脑、肝脏、肾脏或脾脏的3-4倍。
/Exposure to the vapor concn for 50% lethality in rats indicates/ that body fat may be a depot for 1,3-butadiene, since perinephric fat contained 3-4 times more 1,3-butadiene than did brain, liver, kidney, or spleen.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    2.1
  • 立即威胁生命和健康浓度:
    2,000 ppm (10% LEL)
  • 危险品标志:
    T,F,F+,N
  • 安全说明:
    S16,S26,S33,S36/37,S45,S46,S53,S61,S62
  • 危险类别码:
    R45,R12
  • WGK Germany:
    2
  • 海关编码:
    29012410
  • 危险品运输编号:
    UN 1010 2.1
  • 危险类别:
    2.1
  • RTECS号:
    EI9275000
  • 包装等级:
    O52
  • 危险标志:
    GHS02,GHS08
  • 危险性描述:
    H220,H280,H340,H350
  • 危险性防范说明:
    P201,P210,P308 + P313,P410 + P403
  • 储存条件:
    储存注意事项:储存于阴凉、通风的专用库房中,远离火种、热源,库温不宜超过30℃。应与氧化剂、卤素等分开存放,切忌混储。使用防爆型照明和通风设施,并禁止使用易产生火花的机械设备和工具。储区应配备泄漏应急处理设备。

SDS

SDS:ad4c856dacc01873356597e55c29964f
查看
国标编号: 21022
CAS: 106-99-0
中文名称: 1,3-丁二烯
英文名称: 1,3-butadiene
别 名: 乙烯
分子式: C 4 H 6 ;CH 2 CHCHCH 2
分子量: 54.09
熔 点: -108.9℃ 沸点:-4.5?
密 度: 相对密度(=1)0.62;
蒸汽压: -78℃
溶解性: 溶于丙酮、苯、乙酸、酯等多数有机溶剂
稳定性: 稳定
外观与性状: 无色无臭气体
危险标记: 4(易燃气体)
用 途: 用于合成橡胶ABS树酯、酸酐等

2.对环境的影响:
一、健康危害
侵入途径:吸入。
健康危害:本品具有麻醉和刺激作用。
二、毒理学资料及环境行为
毒性:属低毒类。
急性毒性:LD 50 5480mg/kg(大鼠经口);LC 50 285000mg/m 3 ,4小时(大鼠吸入);人吸入1%,轻度反应、头痛、口干、嗜睡等;人吸入17.6g/m 3 ×8小时,上呼吸道刺激反应;人吸入11g/m 3 ×6小时,眼粘膜轻度刺激。
亚急性和慢性毒性:大鼠吸入30mg/m 3 ,81天,造血功能亢进,心肌和肾脏有轻度退行性变。
致突变性:微生物致突变性:鼠伤寒沙门氏菌2pph。
生殖毒性:大鼠吸入最低中毒浓度(TCL 0 ):8000ppm(6小时),(孕后6~15天),对胎鼠骨骼、肌肉有影响。
危险特性:易燃,与空气混合能形成爆炸性混合物。接触热、火星、火焰或氧化剂易燃烧爆炸。若遇高热,可发生聚合反应,放出大量热量而引起容器破裂和爆炸事故。气体比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。
燃烧(分解)产物:一氧化碳二氧化碳

3.现场应急监测方法:


便携式气相色谱法

4.实验室监测方法:


气相色谱法《空气中有害物的测定方法》(第二版),杭士平主编

5.环境标准:

中国(TJ36-79) 车间空气中有害物质的最高容许浓度 100mg/m 3
前苏联(1977) 居民区大气中有害物最大允许浓度 3mg/m 3 (最大值)
1mg/m 3 (昼夜均值)
前苏联(1975) 体中有害物质最高允许浓度 0.05mg/L
嗅觉阈浓度 0.38mg/m 3

6.应急处理处置方法:
一、泄漏应急处理
迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。用工业覆盖层或吸附/吸收剂盖住泄漏点附近的下道等地方,防止气体进入。合理通风,加速扩散。喷雾状稀释、溶解。构筑围堤或挖坑收容产生的大量废。如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。漏气容器要妥善处理,修复、检验后再用。
废弃物处置方法:用焚烧法。
二、防护措施
呼吸系统防护:一般不需要特殊防护,高浓度接触时可佩带自吸过滤式防毒面具(半面罩)。
眼睛防护:必要时,戴化学安全防护眼镜。
身体防护:穿防静电工作服。
手防护:戴一般作业防护手套。
其它:工作现场严禁吸烟。避免长期反复接触。进入罐、限制性空间或其它高浓度区作业,须有人监护。
三、急救措施
皮肤接触:立即脱去被污染的衣着,用大量流动清冲洗,至少15分钟。就医。
眼睛接触:提起眼睑,用流动清或生理盐彻底冲洗。就医。
吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
灭火方法:切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体。喷冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状、泡沫、二氧化碳、干粉。







制备方法与用途

概述

1,3-丁二烯是重要的石油化工原料,在合成橡胶及合成树脂等领域的应用广泛。其中在合成橡胶工业中,其消费量占全球总消费量的80%左右。目前主要的生产方法有两种:丁烷丁烯脱氢法和乙烯副产抽提法,但这些方法严重依赖石油资源。20世纪40至50年代,以乙醇为原料生产1,3-丁二烯的技术曾占据重要地位,然而随着技术进步与经济性考量,这一方法现已不占优势。近年来,在环境污染和能源危机加剧的背景下,各国开始致力于开发以生物乙醇为原料的催化生产工艺。

应用

1,3-丁二烯(以下简称丁二烯)作为重要的石油化工基础有机原料,用途极为广泛。由于其独特的共轭二烯烃性质,可以进行取代、加成、环化及聚合反应,并与多种化合物共聚等,主要用于合成橡胶、树脂、纤维以及增塑剂和乳胶漆等多种化工产品。

合成橡胶

丁二烯是生产合成橡胶(如丁苯橡胶、顺丁橡胶、丁橡胶、丁腈橡胶及聚丁二烯橡胶)的主要原料。随着苯乙烯塑料的发展,利用其与苯乙烯共聚生产的各种用途广泛的树脂(如ABS树脂、SBS树脂、BS树脂MBS树脂),使得丁二烯树脂生产中的地位日益重要。

其他应用

此外,丁二烯还用于合成乙叉降冰片烯(作为乙丙橡胶的第三单体)、1,4-丁二醇(工程塑料)、己二腈(尼龙66单体)、环丁砜蒽醌四氢呋喃等化合物。因此,它也是重要的基础化工原料,在精细化学品生产中也有广泛应用。

化学性质

1,3-丁二烯是一种具有微弱芳香气味的无色气体,易液化,并溶于醇和醚,也能溶解在丙酮、苯、二氯乙烷醋酸戊酯糠醛等溶剂中。不溶于

用途

作为合成橡胶(包括丁苯橡胶、顺丁橡胶、丁腈橡胶、丁橡胶)、树脂(如ABS树脂、SBS树脂及其他相关树脂)的主要原料,以及增塑剂和乳胶漆的成分之一。此外,它还用于生产乙叉降冰片烯1,4-丁二醇己二腈环丁砜等化合物,并在合成香料、表面活性剂及润滑油添加剂等方面有重要用途。

生产方法

工业上主要通过电石炔和乙醛为原料合成、丁烯催化脱氢生、正丁烷一步脱氢或由乙烯装置副产C4抽提等方式生产。其中,以乙烯装置副产C4抽提的方法最为经济,已成为主流生产方式。

化学性质

1,3-丁二烯是一种具有微弱芳香气味的无色气体,易液化,并溶于醇和醚,也能溶解在丙酮、苯、二氯乙烷醋酸戊酯糠醛等溶剂中。不溶于

安全与储存 性质
  • 类别:有害气体
  • 毒性分级:中毒
    • 口服-大鼠 LD50: 5480 毫克/公斤;小鼠 LD50:3210 毫克/公斤
  • 爆炸物危险特性:与空气混合后遇明火、受热可爆
  • 可燃性危险特性:明火、受热可燃,燃烧产生刺激烟雾
储存与运输
  • 库房应通风并保持低温干燥;轻装轻卸;
  • 氧气、空气等助燃气体钢瓶分开存放。
灭火剂 职业标准
  • TWA 22 毫克/立方米
  • STEL 33 毫克/立方米

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1,3-丁二烯 在 manganese(II) acetate 、 1,4,7-三甲基-1,4,7-三氮杂环壬烷 双氧水sodium oxalate草酸 作用下, 以 乙腈 为溶剂, 生成 双环氧化丁二烯
    参考文献:
    名称:
    WO2006/84860
    摘要:
    公开号:
  • 作为产物:
    描述:
    4-乙烯基-1-环己烯 606.85 ℃ 、91.19 kPa 条件下, 生成 1,3-丁二烯
    参考文献:
    名称:
    High temperature pyrolysis of 1,5-cyclooctadiene and 4-vinylcyclohexene in shock waves
    摘要:
    Abstract1,5‐cyclooctadiene or 4‐vinylcyclohexene mixture diluted with argon was heated to temperatures in the range 880–1230 K behind reflected shock waves. Profiles of IR‐laser absorption were measured at 3.39 μm. From these profiles, rate constants k1 and k2 for the decyclization reactions 1,5‐cyclooctadiene → biradical and 4‐vinylcyclohexene → biradical were evaluated as k1 = 5.2 × 1014 exp(−48.3 kcal/RT) s−1 and k2 = 3.5 × 1014 exp(−55.3 kcal/RT) s−1, respectively. © 1993 John Wiley & Sons, Inc.
    DOI:
    10.1002/kin.550251208
  • 作为试剂:
    描述:
    ((7-bromoheptyl)oxy)(tert-butyl)dimethylsilanemagnesium1,3-丁二烯1,2-二溴乙烷 、 nickel dichloride 作用下, 以 四氢呋喃 为溶剂, 反应 0.5h, 生成
    参考文献:
    名称:
    C(sp3)-C(sp3)交叉偶联反应合成环丙烷脂肪酸及α-霉菌酸的形式合成
    摘要:
    新型的含双功能结构单元的顺式-环丙烷与烷基卤化物和烷基格氏试剂的Ni迭代催化C(sp 3)-C(sp 3)交叉偶联反应可将环丙烷环引入所需位置)的饱和碳骨架,提供了直接合成环丙烷脂肪酸的途径。本方法创建了用于构建饱和碳骨架的直接途径,并且可以避免基于在常规合成途径中经常采用的不饱和官能团操纵的繁琐的多步操作。该方法可适用于反式的合成-环丙烷脂肪酸和对映体富集的环丙烷脂肪酸。含环丙烷的双功能结构单元的C(sp 3)-C(sp 3)交叉偶联反应实现了α-霉菌酸的正式合成。
    DOI:
    10.1002/adsc.201800901
点击查看最新优质反应信息

文献信息

  • Terminal Alkenes from Acrylic Acid Derivatives via Non-Oxidative Enzymatic Decarboxylation by Ferulic Acid Decarboxylases
    作者:Godwin A. Aleku、Christoph Prause、Ruth T. Bradshaw-Allen、Katharina Plasch、Silvia M. Glueck、Samuel S. Bailey、Karl A. P. Payne、David A. Parker、Kurt Faber、David Leys
    DOI:10.1002/cctc.201800643
    日期:2018.9.7
    Fungal ferulic acid decarboxylases (FDCs) belong to the UbiD‐family of enzymes and catalyse the reversible (de)carboxylation of cinnamic acid derivatives through the use of a prenylated flavin cofactor. The latter is synthesised by the flavin prenyltransferase UbiX. Herein, we demonstrate the applicability of FDC/UbiX expressing cells for both isolated enzyme and whole‐cell biocatalysis. FDCs exhibit
    真菌阿魏酸脱羧酶 (FDC) 属于 UbiD 酶家族,通过使用异戊二烯化黄素辅因子催化肉桂酸生物的可逆(脱)羧化。后者由黄素异戊烯基转移酶 UbiX 合成。在此,我们证明了 FDC/UbiX 表达细胞对于分离酶和全细胞生物催化的适用性。 FDC表现出高活性,总周转数(TTN)高达55000,周转频率(TOF)高达370 min -1 。共溶剂相容性研究表明,FDC 对某些有机溶剂的耐受性高达 20% v/v。利用 Holo-FDC 的体外(脱)羧酶活性以及全细胞生物催化剂,我们对三种 FDC 进行了底物分析研究,为活性的结构决定因素提供了见解。 FDC 对多种 C3 处带有(杂)环或烯属取代基的丙烯酸生物表现出广泛的底物耐受性,转化率高达 >99%。 FDC 的合成效用通过制备规模的脱羧得到了证明。
  • Stereospecific palladium-catalyzed 1,4-acetoxychlorination of 1,3-dienes
    作者:Jan-E. Bäckvall、Ruth E. Nordberg、Jan-E. Nyström
    DOI:10.1016/s0040-4039(00)87173-7
    日期:1982.1
    Palladium-catalyzed oxidation of 1,3-dienes in acetic acid in the presence of LiCl and LiOAc produces 1-acetoxy-4-chloro-2-alkenes in high selectivity. The 1,4-adducts were stereo- and regioselectively functionalized.
    在LiCl和LiOAc的存在下,乙酸中催化1,3-二烯的氧化可高选择性地生成1-乙酰氧基-4--2-烯烃。1,4-加合物被立体和区域选择性官能化。
  • Palladium(0)-catalyzed functionalization of bromophosphinines
    作者:Pascal Le Floch、Duncan Carmichael、Louis Ricard、Francois Mathey
    DOI:10.1021/ja00076a027
    日期:1993.11
    ine gives either 2,6-bis(diphenylphosphino)- or 2-(diphenylphosphino)phosphinines according to the starting materials. In the case of 2,4,6-tribromophosphinines, the ortho selectivity of the functionalizations probably reflects an initial coordination of [PdL 2 ] to the phosphinine phosphorus
    [PdL 2 ] -催化(L=三苯基-或三呋喃基膦)2,4,6-三-或2,6-二膦与R-SnMe 3 衍生物的交叉偶联产生相应的2,6-二-R-膦,其中 R = 2-呋喃基、2-噻吩基、2-N-甲基吡咯基或 C≡C-Ph。当R为2-吡啶基时,仅得到单取代的膦。根据起始材料,2,4,6-三-或2-膦与(三甲基甲硅烷基)二苯基膦之间的类似交叉偶联反应产生2,6-双(二苯基膦)-或2-(二苯基膦)膦。在 2,4,6-三膦的情况下,官能化的邻位选择性可能反映了 [PdL 2 ] 与膦的初始配位
  • Total Synthesis of (±)-Decursivine
    作者:Andrew B. Leduc、Michael A. Kerr
    DOI:10.1002/ejoc.200600922
    日期:2007.1
    The first preparation of the antimalarial natural product decursivine is described. A Diels–Alder/Plieninger indolization protocol allows convenient preparation of the indole 15 which, in turn is a suitable substrate for a boron–enolate aldol reaction with piperonal (16). The resulting adduct 14 is transformed efficiently to the natural product. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
    描述了抗疟天然产物 decursivine 的首次制备。Diels-Alder/Plieninger 吲哚化方案可以方便地制备吲哚 15,而吲哚 15 又是烯醇醇醛与胡椒醛反应的合适底物 (16)。所得加合物14有效地转化为天然产物。(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)
  • Tandem Decarboxylative Cyclization/Alkenylation Strategy for Total Syntheses of (+)-Longirabdiol, (−)-Longirabdolactone, and (−)-Effusin
    作者:Jianpeng Zhang、Zijian Li、Junming Zhuo、Yue Cui、Ting Han、Chao Li
    DOI:10.1021/jacs.9b03978
    日期:2019.5.22
    Structurally complex and bioactive ent-kaurane diterpenoids have well-characterized biological functions and have drawn widespread attention from chemists for many decades. However, construction of highly oxidized forms of such diterpenoids still presents considerable challenges to synthetic chemists. Herein, we report the first total syntheses of C19 oxygenated spiro-lactone ent-kauranoids, including
    结构复杂且具有生物活性的 ent-kaurane 二萜类化合物具有良好的生物学功能,几十年来一直受到化学家的广泛关注。然而,构建此类二萜类化合物的高度氧化形式仍然对合成化学家提出了相当大的挑战。在此,我们报告了 C19 含氧螺内酯 ent-kauranoids 的首次全合成,包括 longirabdiol、longirabdolactone 和 effusin。通过三个基于自由基的反应实现了用于所有三种合成的通用中间体的简明合成:(1)新设计的串联脱羧环化/烯基化序列,该序列与邻位烯基化同时形成顺式 19,6-内酯, (2) Ni催化的脱羧Giese反应,立体选择性地构建C10季,(3) 乙烯基自由基环化产生刚性双环[3.2.1]辛烷。来自共同中间体的一系列后期氧化依次提供每种天然产物。对这些合成天然产物的进一步生物学评估揭示了广泛的抗癌活性。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台