摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

十二烷 | 112-40-3

中文名称
十二烷
中文别名
正十二烷;联己烷;十二碳烷;正十二碳烷;月桂烷;十二烷烃
英文名称
dodecane
英文别名
n-dodecane
十二烷化学式
CAS
112-40-3;129813-67-8
化学式
C12H26
mdl
MFCD00008969
分子量
170.338
InChiKey
SNRUBQQJIBEYMU-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    -9.6 °C (lit.)
  • 沸点:
    215-217 °C (lit.)
  • 密度:
    0.75 g/mL at 25 °C (lit.)
  • 蒸气密度:
    5.96 (vs air)
  • 闪点:
    181.4 °F
  • 溶解度:
    溶于丙酮、酒精、可溶于氯仿、乙醚(Weast,1986)和许多碳氢化合物
  • 介电常数:
    2.0(20℃)
  • LogP:
    6.100
  • 物理描述:
    N-dodecane is a clear colorless liquid. (NTP, 1992)
  • 颜色/状态:
    Colorless liquid
  • 蒸汽密度:
    5.96 (NTP, 1992) (Relative to Air)
  • 蒸汽压力:
    0.135 mm Hg at 25 °C
  • 亨利常数:
    Henry's Law constant = 8.18 atm-cu m/mol at 25 °C (est)
  • 大气OH速率常数:
    1.42e-11 cm3/molecule*sec
  • 稳定性/保质期:
    Stable under recommended storage conditions.
  • 自燃温度:
    397 °F (203 °C)
  • 分解:
    When heated to decomposition it emits acrid smoke and irritating fumes.
  • 粘度:
    Less than 32 SUS (Saybolt Universal Seconds)
  • 汽化热:
    44.09 kJ/mol at boiling point; 61.52 kJ/mol at 25 °C
  • 气味阈值:
    Odor Threshold Low: 5.31 [mmHg]; [ChemIDplus] Odor threshold from HSDB
  • 折光率:
    Index of refraction: 1.4216 at 20 °C
  • 保留指数:
    1200

计算性质

  • 辛醇/水分配系数(LogP):
    6.1
  • 重原子数:
    12
  • 可旋转键数:
    9
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

代谢
替代燃料正在被考虑用于民用和军事用途。其中之一是S-8,这是一种使用费舍尔-托普施过程合成的替代喷气燃料,它不含有芳香化合物,主要由直链和支链烷烃组成。实验室动物中S-8燃料的代谢物尚未被识别。本研究的目标是识别雄性Fischer 344大鼠暴露于气溶胶化的S-8和一种设计的直链烷烃/多环芳烃混合物(癸烷、十一烷、十二烷、十三烷、十四烷、十五烷、萘和2-甲基萘)后的代谢产物。收集的血和组织样本被分析,寻找从7到15个碳原子的70种直链和支链醇和酮。在S-8暴露后,血液、肺、大脑和脂肪中没有观察到燃料代谢物。在肝脏、尿液和粪便中检测到了代谢物。大多数代谢物是显著烃的2-和3-位置醇和酮,很少有1-或4-位置的代谢物。在暴露于烷烃混合物后,血液、肝脏和肺中观察到了代谢物。有趣的是,仅在肺组织中观察到重代谢物(3-十三酮、2-十三醇和2-十四醇),这可能表明代谢发生在肺部。除了这些重代谢物外,本研究观察到的代谢轮廓与先前报告个别烷烃代谢的研究一致。需要进一步的工作来确定母体、初级和次级代谢物之间的潜在代谢相互作用,并识别更多极性代谢物。一些代谢物可能具有作为燃料暴露生物标志物的潜在用途。
Alternative fuels are being considered for civilian and military uses. One of these is S-8, a replacement jet fuel synthesized using the Fischer-Tropsch process, which contains no aromatic compounds and is mainly composed of straight and branched alkanes. Metabolites of S-8 fuel in laboratory animals have not been identified. The goal of this study was to identify metabolic products from exposure to aerosolized S-8 and a designed straight-chain alkane/polyaromatic mixture (decane, undecane, dodecane, tridecane, tetradecane, pentadecane, naphthalene, and 2-methylnaphthalene) in male Fischer 344 rats. Collected blood and tissue samples were analyzed for 70 straight and branched alcohols and ketones ranging from 7 to 15 carbons. No fuel metabolites were observed in the blood, lungs, brain, and fat following S-8 exposure. Metabolites were detected in the liver, urine, and feces. Most of the metabolites were 2- and 3-position alcohols and ketones of prominent hydrocarbons with very few 1- or 4-position metabolites. Following exposure to the alkane mixture, metabolites were observed in the blood, liver, and lungs. Interestingly, heavy metabolites (3-tridecanone, 2-tridecanol, and 2-tetradecanol) were observed only in the lung tissues possibly indicating that metabolism occurred in the lungs. With the exception of these heavy metabolites, the metabolic profiles observed in this study are consistent with previous studies reporting on the metabolism of individual alkanes. Further work is needed to determine the potential metabolic interactions of parent, primary, and secondary metabolites and identify more polar metabolites. Some metabolites may have potential use as biomarkers of exposure to fuels.
来源:Hazardous Substances Data Bank (HSDB)
代谢
十二烷被羟基化生成相应的初级醇。它通过大鼠肝脏微粒体混合功能氧化酶系统进行代谢。十二烷诱导肺部苯并(a)芘的代谢。
Dodecane is hydroxylated to yield the corresponding primary alcohol. It is metabolized by the rat liver microsomal mixed-function oxidase system. Dodecane induces the metabolism of benzo(a)pyrene in the lung.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
识别和使用:十二烷是一种无色液体。十二烷是汽油的组成部分,用作溶剂、在有机合成中、在喷气燃料研究中、作为蒸馏追踪剂,以及在橡胶和造纸加工工业中使用。人类暴露和毒性:如果吸入、吞咽或通过皮肤吸收,十二烷可能有害。它可能对粘膜有刺激性。动物研究:十二烷可以在动物中引起轻微到严重的皮肤刺激和呼吸道刺激。然而,它只引起了最小到可以忽略的眼部刺激。暴露于0.2毫升十二烷蒸气中的大鼠在24小时内因进行性水肿和出血而死亡。当大鼠暴露于饱和蒸气浓度时,十二烷没有显示出任何效果,包括没有中枢神经系统抑制。在怀孕第一天用苯并(a)芘、茚或苯并(b)菲处理的大鼠后代涂抹十二烷后,后代出现了肿瘤。已经显示十二烷是紫外线辐射引起皮肤癌变的促进剂。十二烷在 Ames Salmonella typhimurium 测试中,无论是否具有代谢激活,都没有增加突变。然而,十二烷能够增强甲基氧化吗啉醋酸在哇巴因抗性位点上引起的突变。
IDENTIFICATION AND USE: Dodecane is a colorless liquid. Dodecane is a component of gasoline and is used as solvent, in organic synthesis, in jet fuel research, as a distillation chaser, and in the rubber and paper processing industries. HUMAN EXPOSURE AND TOXICITY: Dodecane may be harmful if inhaled, swallowed, or absorbed through the skin. It can be irritating to mucous membranes. ANIMAL STUDIES: Dodecane, can produce slight to severe dermal irritation and respiratory in animals. However, it produced only minimal to negligible ocular irritation. Rats exposed to inhalation to 0.2 mL dodecane died within 24 hours of progressive edema and hemorrhaging. Dodecane did not show any effects, including no central nervous system depression, when rats were exposed at the saturated vapor concentrations. Dodecane, applied topically to progeny of rats treated with benzo(a)pyrene, chrysene, or benzo(b)triphenylene on gestation day 1, produced tumors in offspring. Dodecane has been shown to be a promoter of skin carcinogenesis for ultraviolet radiation. Dodecane, did not produce an increase in mutations when tested in the Ames Salmonella typhimurium assay with and without of metabolic activation. However, Dodecane was able to enhance mutagenesis induced by methylazoxymethanol acetate at the ouabain resistance locus.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性数据
大鼠LC50 >142 ppm/8H
LC50 (rat) >142 ppm/8H
来源:Haz-Map, Information on Hazardous Chemicals and Occupational Diseases
毒理性
  • 相互作用
当前研究是一个正在进行的评估一系列脂肪族和芳香烃的剂量相关经皮吸收的方法。首次处理(1X)包含混合物,其中含有十一烷(4.1%)、十二烷(4.7%)、十三烷(4.4%)、十四烷(3%)、十五烷(1.6%)、萘(1.1%)和二甲基萘(喷气燃料的1.3%)的十六烷溶剂,使用猪皮流过扩散池。其他处理(n=4细胞)是2X和5X浓度的。使用气相色谱-火焰离子化检测器(GC-FID)和顶空固相微萃取纤维技术分析灌注液样本。我们已经对实验进行了标准化,以便在媒体标准中所有测试成分都有良好的线性相关性。估计了所有测试烃类的吸收参数,包括扩散性、渗透性、稳态流量和吸收剂量百分比。这种方法提供了一个基线,用以评估它们之间以及与稀释剂(溶剂)之间的成分相互作用。通过使用它们的物理化学参数,推导了一个定量结构渗透性关系(QSPR)模型,以预测在此溶剂系统中未知喷气燃料烃类的渗透性。我们的发现表明,萘和二甲基萘(DMN)的吸收随剂量增加而增加。
... The present study is an ongoing approach to assess the dose-related percutaneous absorption of a number of aliphatic and aromatic hydrocarbons. The first treatment (1X) was comprised of mixtures containing undecane (4.1%), dodecane (4.7%), tridecane (4.4%), tetradecane (3%), pentadecane (1.6%), naphthalene (1.1%), and dimethyl naphthalene (1.3% of jet fuels) in hexadecane solvent using porcine skin flow through diffusion cell. Other treatments (n=4 cells) were 2X and 5X concentrations. Perfusate samples were analyzed with gas chromatography-flame ionization detector (GC-FID) using head space solid phase micro-extraction fiber technique. We have standardized the assay to have a good linear correlation for all the tested components in media standards. Absorption parameters including diffusivity, permeability, steady state flux, and percent dose absorbed were estimated for all the tested hydrocarbons. This approach provides a baseline to access component interactions among themselves and with the diluent (solvents). A quantitative structure permeability relationship (QSPR) model was derived to predict the permeability of unknown jet fuel hydrocarbons in this solvent system by using their physicochemical parameters. Our findings suggested a dose related increase in absorption for naphthalene and dimethyl naphthalene (DMN).
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
航空燃料是由脂肪族(ALI)和芳香族(ARO)烃类组成的复杂混合物,在人类表皮角质形成细胞(HEK)中,它们的单个细胞毒性和促炎症活性有显著差异。为了阐明混合物中单个烃类之间的毒理学相互作用及其对皮肤毒性的贡献,将九种ALI烃和五种ARO烃各分为五组(高/中/低细胞毒性和强/弱IL-8诱导),并内部/相互混合,以评估它们对HEK死亡率和IL-8释放的混合效应。还评估了将单一烃加入JP-8燃料对其皮肤毒性的变化。结果表明,当烃类混合时,HEK死亡率和IL-8释放并不都能通过它们各自影响这两个参数的能力来预测。最低的HEK死亡率(7%)和最高的IL-8产生是由包括高细胞毒性和弱IL-8诱导的ARO烃的混合物引起的。拮抗反应与ALI碳链长度和ARO结构并不一致相关,并且在整个混合物毒性中承担不同的权重。将苯、甲苯、二甲苯或乙苯单独加入JP-8中,即使增加十倍也不会增加HEK死亡率,而单独添加ALI烃类在IL-8中表现出剂量相关的不同反应。在全是ALI的环境中,没有单一烃类是决定HEK细胞毒性的主导因素,而删除十六烷导致IL-8产生增加2.5倍。总的来说,癸烷、十一烷和十二烷是与高细胞毒性相关的的主要烃类,而十四烷、十五烷和十六烷是具有最大缓冲效果,减弱皮肤毒性的烃类。在评估航空燃料对HEK的毒性时,必须考虑混合物效应。
Jet fuels are complex mixtures of aliphatic (ALI) and aromatic (ARO) hydrocarbons that vary significantly in individual cytotoxicity and proinflammatory activity in human epidermal keratinocytes (HEK). In order to delineate the toxicological interactions among individual hydrocarbons in a mixture and their contributions to cutaneous toxicity, nine ALI and five ARO hydrocarbons were each divided into five (high/medium/low cytotoxic and strong/weak IL-8 induction) groups and intra/inter-mixed to assess for their mixture effects on HEK mortality and IL-8 release. Addition of single hydrocarbon to JP-8 fuel was also evaluated for their changes in fuel dermatotoxicity. The results indicated that when hydrocarbons were mixed, HEK mortality and IL-8 release were not all predictable by their individual ability affecting these two parameters. The lowest HEK mortality (7%) and the highest IL-8 production were induced with mixtures including high cytotoxic and weak IL-8 inductive ARO hydrocarbons. Antagonistic reactions not consistently correlated with ALI carbon chain length and ARO structure were evident and carried different weight in the overall mixture toxicities. Single addition of benzene, toluene, xylene or ethylbenzene for up to tenfold in JP-8 did not increase HEK mortality while single addition of ALI hydrocarbons exhibited dose-related differential response in IL-8. In an all ALI environment, no single hydrocarbon is the dominating factor in the determination of HEK cytotoxicity while deletion of hexadecane resulted in a 2.5-fold increase in IL-8 production. Overall, decane, undecane and dodecane were the major hydrocarbons associated with high cytotoxicity while tetradecane, pentadecane and hexadecane were those which had the greatest buffering effect attenuating dermatotoxicity. The mixture effects must be considered when evaluating jet fuel toxicity to HEK.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
航空燃料是由脂肪族(ALI)和芳香族(ARO)烃类组成的复杂混合物,在人类表皮角质形成细胞(HEK)中,它们的单个细胞毒性和促炎症活性有显著差异。为了阐明像航空燃料这样的复杂混合物的皮肤毒性,研究了结构差异、暴露时间和剂量对HEK毒性的影响,通过死亡率和IL-8释放来评估。ALI和ARO烃类被分为4类:高细胞毒性(脂肪族的辛烷、壬烷、癸烷和芳香族的环己基苯、三甲基苯、二甲苯)、低细胞毒性(脂肪族的十四烷、十五烷、十六烷和芳香族的苯)、高IL-8释放(脂肪族的癸烷、十一烷、十二烷和芳香族的对二甲苯、环己基苯、乙苯)和低IL-8释放(脂肪族的十四烷、十五烷、十六烷和芳香族的苯、甲苯、二甲苯)。将4类ALI烃类相互混合,或者与4类ARO烃类交叉混合。在24小时内评估了HEK的细胞毒性和IL-8产生情况。结果显示,ALI和ARO烃类之间存在拮抗细胞毒性效应,其中ALI降低了ARO烃类引起的HEK死亡率。另一方面,ARO烃类减少了由ALI烃类显著引起的IL-8增加。在低IL-8诱导性和低细胞毒性烃类之间发现了协同效应,而且最高的细胞毒性和IL-8诱导响应并不完全对应于高细胞毒性和高IL-8诱导性烃类的混合物。这项研究支持了一个概念,即ARO决定了HEK死亡的程度,而ALI是引发促炎症反应的主要贡献者。在评估对HEK的细胞毒性时,必须考虑混合物效应。
Jet fuels are complex mixtures of aliphatic (ALI) and aromatic (ARO) hydrocarbons that vary significantly in individual cytotoxicity and proinflammatory activities in human epidermal keratinocytes (HEK). In order to elucidate the dermatotoxicity of a complex mixture like jet fuels, structural differences, exposure time and dosage were investigated on HEK toxicity assessed by mortality and IL-8 release. ALI and ARO hydrocarbons were grouped into 4 categories: highly cytotoxic (octane, nonane, decane for aliphatics and cyclohexalbenzene, trimethylbenzene, xylene for aromatics), low cytotoxic (tetradecane, pentadecane, hexadecane for aliphatics and benzene for aromatics), high IL-8 release (decane, undecane, dodecane for aliphatics and dimethylnapthalene, cyclohexylbenzene, ethylbenzene for aromatics) and low IL-8 release (tetradecane, pentadecane, hexadecane for aliphatics and benzene, toluene, xylene for aromatics). The 4 categories of ALI hydrocarbons were mixed with each other, or cross-mixed with each of the 4 categories of ARO hydrocarbons. The resulting cytotoxicity and IL-8 production from HEK were evaluated at 24 hr. The results showed an antagonistic cytotoxic effect between ALI and ARO hydrocarbons in which ALI attenuated the degree of HEK mortality caused by the ARO hydrocarbons. On the other hand, the ARO hydrocarbons reduced the significant increase of IL-8 induced by ALI hydrocarbons. Synergistic effects between low IL-8 inductive and low cytotoxic hydrocarbons were found and the highest cytotoxic and IL-8 inductive responses did not completely correspond to the mixture of highly cytotoxic and highly IL-8 inductive hydrocarbons. This study supports the concept that the ARO dictate the degree of HEK mortality, while the ALI are the major contributor to inciting the proinflammatory response. Mixture effects must be considered when evaluating cytotoxicity to HEK.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
猪接触了被JP-8喷气燃料浸泡的棉布1天和4天,并每天重复暴露。预先暴露和未暴露的皮肤随后被切割并放置在流动式体外扩散细胞中。五个含有暴露皮肤的细胞和四个含有未暴露皮肤的细胞被给予由14种不同烃类(HC)组成的混合物,包括壬烷、癸烷、十一烷、十二烷、十三烷、十四烷、十五烷、十六烷、乙基苯、邻二甲苯、三甲基苯(TMB)、环己基苯(CHB)、萘和二甲基萘(DMN),用水+乙醇(50:50)作为稀释剂。另外五个只含有JP-8暴露皮肤的细胞仅被给予稀释剂,以确定喷气燃料HC的皮肤保留。计算了研究的HC的吸收参数,包括流量、扩散性和渗透性。数据显示,通过1天和4天JP-8预先暴露的皮肤,特定芳香族HC如乙基苯、邻二甲苯和TMB的吸收分别增加了两倍和四倍。同样,十二烷和十三烷在4天JP-8预先暴露的皮肤实验中比1天实验吸收得更多。萘和DMN的吸收在1天和4天预先暴露的情况下比对照组增加了1.5倍。与1天暴露相比,CHB、萘和DMN在4天预先暴露中具有显著的持久皮肤保留,这可能会使皮肤在暴露后几天内具有进一步吸收的能力。FTIR光谱表明,燃料预先暴露的皮肤增加HC吸收的可能机制是通过从角质层提取脂质。这项研究表明,皮肤预先暴露于喷气燃料会增强随后的体外经皮吸收HC,因此,从无知皮肤获得的喷气燃料HC的单次剂量吸收数据可能不足以预测重复暴露的毒性潜力。对于某些化合物,可能在初次暴露后的几天内发生持久吸收。
... Pigs were exposed to JP-8 jet fuel-soaked cotton fabrics for 1 and 4 d with repeated daily exposures. Preexposed and unexposed skin was then dermatomed and placed in flow-through in vitro diffusion cells. Five cells with exposed skin and four cells with unexposed skin were dosed with a mixture of 14 different hydrocarbons (HC) consisting of nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, ethyl benzene, o-xylene, trimethyl benzene (TMB), cyclohexyl benzene (CHB), naphthalene, and dimethyl naphthalene (DMN) in water + ethanol (50:50) as diluent. Another five cells containing only JP-8-exposed skin were dosed solely with diluent in order to determine the skin retention of jet fuel HC. The absorption parameters of flux, diffusivity, and permeability were calculated for the studied HC. The data indicated that there was a two-fold and four-fold increase in absorption of specific aromatic HC like ethyl benzene, o-xylene, and TMB through 1- and 4-d JP-8 preexposed skin, respectively. Similarly, dodecane and tridecane were absorbed more in 4-d than 1-d JP-8 preexposed skin experiments. The absorption of naphthalene and DMN was 1.5 times greater than the controls in both 1- and 4-d preexposures. CHB, naphthalene, and DMN had significant persistent skin retention in 4-d preexposures as compared to 1-d exposures that might leave skin capable of further absorption several days postexposure. The possible mechanism of an increase in HC absorption in fuel preexposed skin may be via lipid extraction from the stratum corneum as indicated by Fourier transform infrared (FTIR) spectroscopy. This study suggests that the preexposure of skin to jet fuel enhances the subsequent in vitro percutaneous absorption of HC, so single-dose absorption data for jet fuel HC from naive skin may not be optimal to predict the toxic potential for repeated exposures. For certain compounds, persistent absorption may occur days after the initial exposure.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
当前研究是一个正在进行的评估一系列脂肪族和芳香烃的剂量相关经皮吸收的方法。首次处理(1X)包含了混合物,其中含有十一烷(4.1%)、十二烷(4.7%)、十三烷(4.4%)、十四烷(3%)、十五烷(1.6%)、萘(1.1%)和二甲基萘(喷气燃料的1.3%)的十六烷溶剂,使用猪皮流过扩散池。其他处理(n=4细胞)是2X和5X浓度的。使用气相色谱-火焰离子化检测器(GC-FID)和顶空固相微萃取纤维技术分析灌注液样本。我们已经对实验进行了标准化,以便在媒体标准中所有测试成分都有良好的线性相关性。估计了所有测试烃类的吸收参数,包括扩散性、渗透性、稳态流量和吸收剂量百分比。这种方法提供了一个基线,用以评估它们之间以及与稀释剂(溶剂)之间的成分相互作用。通过使用它们的理化参数,推导了一个定量结构渗透性关系(QSPR)模型,以预测在此溶剂系统中未知喷气燃料烃类的渗透性。我们的发现表明,萘和二甲基萘(DMN)的吸收随剂量增加而增加。
... The present study is an ongoing approach to assess the dose-related percutaneous absorption of a number of aliphatic and aromatic hydrocarbons. The first treatment (1X) was comprised of mixtures containing undecane (4.1%), dodecane (4.7%), tridecane (4.4%), tetradecane (3%), pentadecane (1.6%), naphthalene (1.1%), and dimethyl naphthalene (1.3% of jet fuels) in hexadecane solvent using porcine skin flow through diffusion cell. Other treatments (n=4 cells) were 2X and 5X concentrations. Perfusate samples were analyzed with gas chromatography-flame ionization detector (GC-FID) using head space solid phase micro-extraction fiber technique. We have standardized the assay to have a good linear correlation for all the tested components in media standards. Absorption parameters including diffusivity, permeability, steady state flux, and percent dose absorbed were estimated for all the tested hydrocarbons. This approach provides a baseline to access component interactions among themselves and with the diluent (solvents). A quantitative structure permeability relationship (QSPR) model was derived to predict the permeability of unknown jet fuel hydrocarbons in this solvent system by using their physicochemical parameters. Our findings suggested a dose related increase in absorption for naphthalene and dimethyl naphthalene (DMN).
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
大鼠组织:空气和血液:辛烷、壬烷、癸烷、十一烷和十二烷(n-C8至n-C12正烷烃)的空气与血液分配系数(PCs)通过瓶平衡法确定。n-C8至n-C12的血液:空气PC值分别为3.1、5.8、8.1、20.4和24.6。正烷烃的脂溶性随着碳链长度的增加而增加,这表明脂溶性是描述正烷烃血液:空气PC值的重要决定因素。肌肉:血液、肝脏:血液、大脑:血液和脂肪:血液的PC值分别为辛烷(1.0、1.9、1.4和247)、壬烷(0.8、1.9、3.8和274)、癸烷(0.9、2.0、4.8和328)、十一烷(0.7、1.5、1.7和529)和十二烷(1.2、1.9、19.8和671)。组织:血液PC值在脂肪中最高,在肌肉中最低。十一烷的大脑:空气PC值与其他正烷烃的值不一致。使用这些正烷烃的测量分配系数值,线性回归用于预测更大正烷烃的组织(大脑除外)和血液:空气分配系数值,包括十三烷、十四烷、十五烷、十六烷和十七烷(n-C13至n-C17)。对于n-C8至n-C12的正烷烃,实测的组织:空气和血液:空气分配系数值与预测值之间有很好的一致性,这为更长链正烷烃的分配系数预测提供了信心。
Rat tissue:air and blood:air partition coefficients (PCs) for octane, nonane, decane, undecane, and dodecane (n-C8 to n-C12 n-alkanes) were determined by vial equilibration. The blood:air PC values for n-C8 to n-C12 were 3.1, 5.8, 8.1, 20.4, and 24.6, respectively. The lipid solubility of n-alkanes increases with carbon length, suggesting that lipid solubility is an important determinant in describing n-alkane blood:air PC values. The muscle:blood, liver:blood, brain:blood, and fat:blood PC values were octane (1.0, 1.9, 1.4, and 247), nonane (0.8, 1.9, 3.8, and 274), decane (0.9, 2.0, 4.8, and 328), undecane (0.7, 1.5, 1.7, and 529), and dodecane (1.2, 1.9, 19.8, and 671), respectively. The tissue:blood PC values were greatest in fat and the least in muscle. The brain:air PC value for undecane was inconsistent with other n-alkane values. Using the measured partition coefficient values of these n-alkanes, linear regression was used to predict tissue (except brain) and blood:air partition coefficient values for larger n-alkanes, tridecane, tetradecane, pentadecane, hexadecane, and heptadecane (n-C13 to n-C17). Good agreement between measured and predicted tissue:air and blood:air partition coefficient values for n-C8 to n-Cl2 offer confidence in the partition coefficient predictions for longer chain n-alkanes.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
十二烷主要通过吸入被吸收。它已在母乳中被检测到。
Absorption of dodecane occurs mainly by inhalation. It has been detected on mother's milk.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • TSCA:
    Yes
  • 危险品标志:
    Xn
  • 安全说明:
    S36,S60,S62
  • 危险类别码:
    R66,R65
  • WGK Germany:
    1,3
  • 海关编码:
    2901100000
  • 危险品运输编号:
    NA 1993 / PGIII
  • 包装等级:
    I; II; III
  • 危险标志:
    GHS08
  • 危险性描述:
    H304
  • 危险性防范说明:
    P301 + P310,P331
  • 危险类别:
    9

SDS

SDS:a59368850b4ae26cfeb73b28570b3360
查看

制备方法与用途

应用 十二烷被用作溶剂和蒸馏驱动剂,同时也是柴油的平均组分之一。通过直线型十二烷与浓硫酸发生磺化反应,并加入钠,可以制得表面活性剂十二烷基磺酸钠。

制备方法 十二烷可通过石油或煤油精馏得到。首先采用吸附法分离出十二烷烃异构体混合物,再经精馏获取纯净的十二烷馏分,进一步精制后即可获得成品。

化学性质 十二烷为无色液体,熔点为-9.6℃(约等于-12℃),沸点分别为216.3℃、145℃(13.3kPa)和91.5℃(1.3kPa)。其相对密度为0.7487(20/4℃),折光率为1.4216,闪点为71℃。该物质易溶于乙醇、乙醚、丙酮、氯仿及四氯化碳,而不溶于水。

用途 十二烷可用作有机合成的中间体、溶剂以及色谱分析的标准物质。

  • 用于生产十二碳二元酸、直链醇和卤代烷;
  • 作为日用化学产品的主要原料油之一;
  • 气相色谱分析标准品;
  • 有机合成。

生产方法 由溴己烷与金属钠反应制得。

类别 易燃液体

毒性分级 低毒

急性毒性 静注- 小鼠 LDL0: 2672 毫克/公斤

爆炸物危险特性 与空气混合可爆

可燃性危险特性 遇明火、高温或强氧化剂时易燃;燃烧排放出刺激性的烟雾

储运特性 包装需保持完整,轻装轻卸; 储存于通风库房中,远离明火和高温,并避免与氧化剂混存。

灭火剂 适用泡沫、干粉、二氧化碳及砂土。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
    正十六烷 Hexadecane 544-76-3 C16H34 226.446
    正辛烷 octane 111-65-9 C8H18 114.231
    癸烷 decane 124-18-5 C10H22 142.285
    环十二烷 cyclododecane 294-62-2 C12H24 168.323
    正十八烷 octadecane 593-45-3 C18H38 254.5
    正庚烷 n-heptane 142-82-5 C7H16 100.204
    正己烷 hexane 110-54-3 C6H14 86.1772
    1-碘辛烷 1-Iodooctane 629-27-6 C8H17I 240.127
    1-碘十二烷 1-Iodododecane 4292-19-7 C12H25I 296.235
    1-碘癸烷 Iododecane 2050-77-3 C10H21I 268.181
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    正壬烷 nonane 111-84-2 C9H20 128.258
    癸烷 decane 124-18-5 C10H22 142.285
    十一烷 Undecan 1120-21-4 C11H24 156.312
    正庚烷 n-heptane 142-82-5 C7H16 100.204
    正己烷 hexane 110-54-3 C6H14 86.1772
    异十二烷 2-methylundecane 7045-71-8 C12H26 170.338
    —— 2,9-dimethyldecane 1002-17-1 C12H26 170.338
    正戊烷 pentane 109-66-0 C5H12 72.1503
    1-碘十二烷 1-Iodododecane 4292-19-7 C12H25I 296.235

反应信息

  • 作为反应物:
    描述:
    十二烷 在 recombinant Alcanivorax borkumensis SK2 A13-red 、 还原型辅酶II(NADPH)四钠盐 、 sodium chloride 作用下, 以 乙酸丁酯 为溶剂, 生成 十二烷醇
    参考文献:
    名称:
    温和条件下烷烃活化的区域选择性生物催化剂
    摘要:
    走向绿色:烷烃羟基化的化学方法涉及有毒,危险的试剂,选择性不高。在基于人工自给自足的细胞色素P450的生化替代方法中,在温和条件下可以对正构烷烃进行高度选择性和高效的末端羟基化(请参阅方案; NADPH是烟酰胺腺嘌呤二核苷酸磷酸(NADP +)的还原形式) 。
    DOI:
    10.1002/anie.201005597
  • 作为产物:
    描述:
    十二烷醇氢气 作用下, 以 异丙醇萘烷 为溶剂, 170.0 ℃ 、4.0 MPa 条件下, 反应 3.0h, 以53%的产率得到十二烷
    参考文献:
    名称:
    在温和条件下,MoOx 改性的 Ru 催化剂将椰子油衍生的月桂酸选择性加氢转化为醇和脂肪族烷烃
    摘要:
    氧化钼修饰的氧化钛上的钌(Ru-( y )MoO x /TiO 2;y是 Mo 的负载量)催化剂对羧酸加氢转化为相应的醇(脂肪醇)和脂肪族烷烃具有高活性(生物燃料)在 2-丙醇/水 (4.0/1.0 v/v) 溶剂中的间歇反应器中,反应条件温和。在所测试的Ru-( y )MoO x /TiO 2催化剂中,Ru-(0.026)MoO x /TiO 2(Mo负载量为0.026 mmol g -1 )催化剂显示出脂肪族n的最高产率-烷烃来自椰子油衍生的月桂酸和各种脂肪族脂肪酸 C6-C18 前体,在 170-230 °C、30-40 bar 下 7-20 小时。在Ru-(0.026)MoO x /TiO 2上,作为最佳催化剂,月桂酸在较低反应温度(130 ≥ T ≤ 150 °C)下的加氢转化产生十二烷-1-醇和十二烷酸十二烷酯作为进一步酯化的结果月桂酸和相应的醇。反应温度升高至 230 °C 显着提高了月桂酸的加氢脱氧程度,并在
    DOI:
    10.1039/d2ra02103j
  • 作为试剂:
    描述:
    4-碘代苯乙酮 在 palladium on activated charcoal indium十二烷lithium chloride 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 反应 2.5h, 以88%的产率得到4,4'-二乙酰联苯
    参考文献:
    名称:
    铟介导的钯催化的芳基和乙烯基卤化物的分子间和分子内偶联反应。
    摘要:
    在温和的条件下(DMF,100摄氏度,1-3小时)用50摩尔%的100目铟,2.5摩尔%的Pd-C和1.5当量的LiCl处理芳基和乙烯基卤化物可以有效地高效生产偶联产物形成C(sp2)-C(sp2)键的优异产率。该试剂在分子间和分子内偶联反应中均能很好地起作用,产生各种联芳基,1,3-二烯和环状化合物。
    DOI:
    10.1021/ol047567v
点击查看最新优质反应信息

文献信息

  • Studies of reduction with dimethoxyborane-transition metal boride systems.
    作者:Atsuko NOSE、Tadahiro KUDO
    DOI:10.1248/cpb.38.1720
    日期:——
    The reductino of a variety of functional groups with new dimethoxyborane-transition metal boride systems was investigated. These systems reduced olefin, aldehyde, ketone and nitrile functionalities to afford the corresponding reduction products under mild conditions. In particular, olefins bearing ketone, carboxylic acid and nitrile functionalities were selectively reduced with the dimethoxyborane-nickel boride system using 1/5mol eq of nickel boride.
    研究了新型二甲氧基硼烷-过渡金属硼化物体系对多种官能团的还原作用。这些体系在温和条件下将烯烃、醛、酮和腈类官能团还原,得到了相应的还原产物。特别是,含有酮、羧酸和腈结构的烯烃在1/5摩尔当量的镍硼化物作用下,通过二甲氧基硼烷-镍硼化物体系选择性地还原。
  • Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni‐Core–Shell Catalyst
    作者:Jie Gao、Rui Ma、Lu Feng、Yuefeng Liu、Ralf Jackstell、Rajenahally V. Jagadeesh、Matthias Beller
    DOI:10.1002/anie.202105492
    日期:2021.8.16
    selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which
    提出了各种烯烃的选择性氢化和氘化的通用方案。这些反应成功的关键是使用特定的镍-石墨壳基核壳结构催化剂,该催化剂可以通过浸渍碳上的硝酸镍并随后在氩气下于 450 °C 下煅烧来方便地制备。应用这种纳米结构催化剂,具有工业和商业重要性的末端烯烃和内部烯烃在环境条件下(室温,使用1巴氢气或1巴氘)进行选择性氢化和氘化,从而获得相应的烷烃和氘。标记烷烃的收率良好至极好。通过克级反应以及高效的催化剂回收实验证明了这种镍基加氢方案的合成效用和实用性。
  • 化合物及びその製造方法
    申请人:国立研究開発法人産業技術総合研究所
    公开号:JP2021070651A
    公开(公告)日:2021-05-06
    【課題】新規のかご型シロキサン化合物と、その製造方法の提供。【解決手段】一般式(2)で表される化合物(p1は0、1又は2)と、アルキル化剤とを反応させることにより、一般式(3)(Z3は、H又は置換基を有していてもよいアルキル基;(2p1+6)個のZ3は互いに同一でも異なっていてもよく、ただし、1個又は2個以上のZ3は、前記置換基を有していてもよいアルキル基であり;p1は、上記と同じである。)で表される化合物を得る、化合物の製造方法。【選択図】なし
    提供新型篮式硅氧烷化合物及其制备方法。通过使通式(2)所示的化合物(p1为0、1或2)与烷基化剂反应,得到通式(3)(Z3为H或可含取代基的烷基;(2p1+6)个Z3可以相同也可以不同,但其中1个或2个以上的Z3可以是含有取代基的烷基;p1与上述相同。)所示的化合物,化合物的制备方法。【选择图】无
  • Iridium-Catalyzed Direct Dehydroxylation of Alcohols
    作者:Jian-Lin Huang、Xi-Jie Dai、Chao-Jun Li
    DOI:10.1002/ejoc.201301293
    日期:2013.10
    Iridium-catalyzed direct dehydroxylation of alcohols with hydrazine was developed through a combination of the oxidation of alcohols and the Wolff–Kishner reduction. This protocol is simple to perform and highly efficient for a series of primary, benzylic and allylic alcohols.
    通过将醇的氧化和 Wolff-Kishner 还原相结合,开发了铱催化的醇与肼的直接脱羟基。对于一系列伯醇、苄醇和烯丙醇,该协议易于执行且高效。
  • En Route to a Practical Primary Alcohol Deoxygenation
    作者:Xi-Jie Dai、Chao-Jun Li
    DOI:10.1021/jacs.6b02344
    日期:2016.4.27
    efficient mainly with activated alcohols, which dictates harsh reaction conditions and thus limits its synthetic utility. Later, a significant advancement has been made on aliphatic primary alcohol deoxygenation by employing a ruthenium complex, with good functional group tolerance and exclusive selectivity under practical reaction conditions. Its synthetic utility is further illustrated by excellent
    醇脱氧领域的一个长期科学挑战是在存在其他官能团(如广泛存在于生物分子中的游离羟基和胺)的情况下,具有高选择性和高效率的直接催化 sp(3) CO 去官能化。以前,选择性问题只能通过使用化学计量试剂的经典多步脱氧策略来解决。在此,我们提出了一种基于脱氢/沃尔夫-基什纳 (WK) 还原的催化后过渡金属催化氧化还原设计,以同时解决步骤经济性和选择性方面的挑战。我们假设的早期发展侧重于主要使用活化醇有效的铱催化过程,这决定了苛刻的反应条件,从而限制了其合成效用。之后,采用钌配合物在脂肪族伯醇脱氧方面取得了重大进展,在实际反应条件下具有良好的官能团耐受性和专属选择性。在简单和复杂的分子设置中,其卓越的效率以及完全的化学和区域选择性进一步说明了其合成效用。实验支持还包括机械讨论。总体而言,我们目前的方法成功地解决了相关领域中的上述挑战,为脂肪族伯醇的直接 sp(3) CO 去官能化提供了一种实用的基于
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台