摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

癸烷 | 124-18-5

中文名称
癸烷
中文别名
十烷;十碳烷;正癸烷;;正十烷;正癸烷
英文名称
decane
英文别名
n-decane
癸烷化学式
CAS
124-18-5
化学式
C10H22
mdl
MFCD00008954
分子量
142.285
InChiKey
DIOQZVSQGTUSAI-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    -30 °C
  • 沸点:
    174 °C(lit.)
  • 密度:
    0.735
  • 蒸气密度:
    4.9 (vs air)
  • 闪点:
    115 °F
  • 溶解度:
    0.00005克/升
  • 介电常数:
    1.8(130℃)
  • LogP:
    5.010
  • 物理描述:
    N-decane appears as a colorless liquid. Flash point 115°F. Less dense than water and insoluble in water. Vapors heavier than air. In high concentrations its vapors may be narcotic. Used as a solvent and to make other chemicals.
  • 颜色/状态:
    Colorless liquid
  • 蒸汽密度:
    4.9 (NTP, 1992) (Relative to Air)
  • 蒸汽压力:
    1.43 mm Hg at 25 °C
  • 大气OH速率常数:
    1.16e-11 cm3/molecule*sec
  • 稳定性/保质期:
    1. **稳定性**:稳定。 2. **禁配物**:强氧化剂、强酸、强碱、卤素。 3. **聚合危害**:不聚合。
  • 自燃温度:
    410 °F (210 °C)
  • 粘度:
    2.188 mPa s at -25 °C; 1.277 mPa s at 0 °C; 0.838 mPa s at 25 °C; 0.598 mPa s at 50 °C; 0.453 mPa s at 75 °C; 0.359 mPa s at 100 °C
  • 燃烧热:
    -6778.29 kJ/mol at 25 °C
  • 汽化热:
    39.58 kJ/mol at 174.15 °C; 51.42 kJ/mol at 25 °C
  • 表面张力:
    24.75 mN/m at 10 °C; 23.37 mN/m at 25 °C; 21.07 mN/m at 50 °C; 18.77 mN/m at 75 °C; 16.47 mN/m at 100 °C
  • 气味阈值:
    11 mg/cu m
  • 折光率:
    Index of refraction: 1.4102 at 20 °C
  • 相对蒸发率:
    First-order evaporation constants of n-decane in 3-mm layer No 2 fuel oil, darkened room, wind speed: 21 km/hr: at 5 °C, 1.19X10-3/min; at 10 °C, 1.87X10-3/min; at 20 °C, 3.44X10-3/min; at 30 °C, 6.98X10-3/min
  • 保留指数:
    1000

计算性质

  • 辛醇/水分配系数(LogP):
    5
  • 重原子数:
    10
  • 可旋转键数:
    7
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

代谢
替代燃料正在被考虑用于民用和军事用途。其中之一是S-8,这是一种使用费舍尔-托普施过程合成的替代喷气燃料,它不含有芳香化合物,主要由直链和支链烷烃组成。实验室动物中S-8燃料的代谢物尚未被识别。本研究的目标是识别雄性Fischer 344大鼠暴露于气溶胶化的S-8和一种设计的直链烷烃/多环芳烃混合物(癸烷、十一烷、十二烷、十三烷、十四烷、十五烷、萘和2-甲基萘)后的代谢产物。收集的血和组织样本被分析,寻找从7到15个碳原子的70种直链和支链醇和酮。在S-8暴露后,血液、肺、大脑和脂肪中没有观察到燃料代谢物。在肝脏、尿液和粪便中检测到了代谢物。大多数代谢物是显著烃的2-和3-位置醇和酮,很少有1-或4-位置的代谢物。在暴露于烷烃混合物后,血液、肝脏和肺中观察到了代谢物。有趣的是,仅在肺组织中观察到重代谢物(3-十三酮、2-十三醇和2-十四醇),这可能表明代谢发生在肺部。除了这些重代谢物外,本研究观察到的代谢轮廓与先前报告个别烷烃代谢的研究一致。需要进一步的工作来确定母体、初级和次级代谢物之间的潜在代谢相互作用,并识别更多极性代谢物。一些代谢物可能具有作为燃料暴露的生物标志物的潜在用途。
Alternative fuels are being considered for civilian and military uses. One of these is S-8, a replacement jet fuel synthesized using the Fischer-Tropsch process, which contains no aromatic compounds and is mainly composed of straight and branched alkanes. Metabolites of S-8 fuel in laboratory animals have not been identified. The goal of this study was to identify metabolic products from exposure to aerosolized S-8 and a designed straight-chain alkane/polyaromatic mixture (decane, undecane, dodecane, tridecane, tetradecane, pentadecane, naphthalene, and 2-methylnaphthalene) in male Fischer 344 rats. Collected blood and tissue samples were analyzed for 70 straight and branched alcohols and ketones ranging from 7 to 15 carbons. No fuel metabolites were observed in the blood, lungs, brain, and fat following S-8 exposure. Metabolites were detected in the liver, urine, and feces. Most of the metabolites were 2- and 3-position alcohols and ketones of prominent hydrocarbons with very few 1- or 4-position metabolites. Following exposure to the alkane mixture, metabolites were observed in the blood, liver, and lungs. Interestingly, heavy metabolites (3-tridecanone, 2-tridecanol, and 2-tetradecanol) were observed only in the lung tissues possibly indicating that metabolism occurred in the lungs. With the exception of these heavy metabolites, the metabolic profiles observed in this study are consistent with previous studies reporting on the metabolism of individual alkanes. Further work is needed to determine the potential metabolic interactions of parent, primary, and secondary metabolites and identify more polar metabolites. Some metabolites may have potential use as biomarkers of exposure to fuels.
来源:Hazardous Substances Data Bank (HSDB)
代谢
JP-8喷气燃料是由芳香烃和脂肪烃组成的复杂混合物。本研究的目的是确定大鼠肝脏微粒体氧化半挥发性正构烷烃(壬烷(C9)、癸烷(C10)和十四烷(C14))的体外代谢速率常数。通过气相色谱测量母体化合物的消失来评估代谢。将不同浓度的正构烷烃与成年雄性F-344大鼠的肝脏微粒体一起孵化。壬烷和癸烷的非线性动力学常数分别为V(max)(nmol/mg蛋白质/min)= 7.26 ± 0.20和2.80 ± 0.35,K(M)(微M)= 294.83 ± 68.67和398.70 ± 42.70。通过内在清除率(V(max)/K(M))评估的代谢能力,壬烷(0.03 ± 0.005)比癸烷(0.007 ± 0.001)高出大约四倍。即使微粒体蛋白浓度更高,孵化时间更长,十四烷也没有明显的代谢。这些结果表明正构烷烃的代谢清除率与其链长呈负相关。这些代谢速率常数将用于更新现有的基于生理的药代动力学(PBPK)模型中的壬烷和癸烷部分,作为开发JP-8的PBPK模型的一部分。
Jet propellant 8 (JP-8) jet fuel is a complex mixture of aromatic and aliphatic hydrocarbons. The aim of this study was to determine in vitro metabolic rate constants for semivolatile n-alkanes, nonane (C9), decane (C10), and tetradecane (C14), by rat liver microsomal oxidation. The metabolism was assessed by measuring the disappearance of parent compound by gas chromatography. Various concentrations of n-alkanes were incubated with liver microsomes from adult male F-344 rats. Nonlinear kinetic constants for nonane and decane were V(max) (nmol/mg protein/min) = 7.26 +/- 0.20 and 2.80 +/- 0.35, respectively, and K(M) (micro M) = 294.83 +/- 68.67 and 398.70 +/- 42.70, respectively. Metabolic capacity as assessed by intrinsic clearance (V(max)/K(M)) was approximately four-fold higher for nonane (0.03 +/- 0.005) than for decane (0.007 +/- 0.001). There was no appreciable metabolism of tetradecane even with higher microsomal protein concentration and longer incubation time. These results show a negative correlation between metabolic clearance and chain length of n-alkanes. These metabolic rate constants will be used to update existing physiologically based pharmacokinetic (PBPK) models for nonane and decane as part of developing a PBPK model for JP-8.
来源:Hazardous Substances Data Bank (HSDB)
代谢
癸烷在大鼠体内首先被代谢成羟基衍生物,然后通过细胞色素P450微粒体混合功能氧化酶转化为相应的酮形式。癸烷羟基化已在从小鼠、大鼠、兔子、牛、鸽子和鸡胚胎获得的肝脏微粒体组分中观察到。在大鼠中,羟基化不仅发生在肝脏,还发生在其他器官以及从肾脏和肺隔离的微粒体中。
Decane is metabolized in rats to hydroxy derivates before being converted to the respective keto form, using a cytochrome P450-microsomal oxidase mixed function. Decane hydroxylation has been observed in liver microsomal fractions obtained from mice, rats, rabbits, cows, pigeons, and chick embryos. In rats, hydroxylation takes place not only in liver, but in other organs and microsomes isolated from the kidney and lungs.
来源:Hazardous Substances Data Bank (HSDB)
代谢
癸烷被来自小鼠、大鼠、家兔、牛、鸽和鸡胚的肝微粒体氧化。小鼠肝微粒体氧化癸烷需要NADPH和氧气。癸醇、癸酸和癸亚甲基甘油是癸烷氧化的主要代谢物,这表明癸烷氧化是通过癸烷羟基化成癸醇来启动的。
Decane was oxidized by microsomes from livers of mouse, rat, rabbit, beef, pigeon and chick embryo. The oxidation of decane by mouse liver microsomes required NADPH and oxygen. Decanol, decanoic acid and decamethylene glycol were major metabolites of decane oxidation, suggesting that decane oxidation is inititated by hydroxylation of decane to decanol.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
识别和使用:十烷是一种无色液体。它用于有机合成,作为溶剂,标准化烃,以及喷气燃料研究。人类暴露和毒性:在人类受试者的测试中,30%的溶液涂抹在皮肤上并保留24小时未产生刺激性。十烷是一种简单的窒息剂,在高浓度下会导致中枢神经系统抑制。动物研究:暴露于十烷蒸汽的老鼠已经检查了晶状体混浊,但没有发现白内障。通过吸入0.2毫升十烷的老鼠在24小时内因肺水肿和出血而死亡。十烷高度溶于脂肪,当吸入肺部时会导致肺 pneumonitis。动物表现出呼吸困难、呼吸急促和发绀。在吸入十烷的老鼠中,十烷在5克/立方米时引起了一些有限的,但具有统计学意义的行为神经学效应,而在1.5克/立方米时没有效果。老鼠每天暴露于540 ppm的十烷18小时,每周7天,持续57天,刺激了体重增加并降低了总白细胞计数,但没有注意到骨髓变化或其他器官变化。将未稀释的十烷涂在老鼠的皮肤上(每只老鼠0.1-0.15克,每周3次,持续50周)导致真皮纤维化、色素沉着和一些溃疡。一些动物还表现出肾脏影响和肺部出血。经过紫外线辐射(波长大于350纳米,通常认为不具有致癌性)处理后,处理过的老鼠背部出现了肿瘤。在任何剂量水平下,大鼠的生殖或发育参数都没有观察到具有统计学意义的处理相关效应。以下致突变性研究为阴性:沙门氏菌(Salmonella typhimurium)的Ames试验 - 有和没有代谢活化 - ;中国仓鼠(V79)肺细胞的正向突变;中国仓鼠(V79)肺细胞的染色体畸变细胞遗传学分析;叙利亚仓鼠胚胎细胞的细胞转化和共转化与苯并(a)芘;以及叙利亚仓鼠胚胎细胞的细胞间通讯。
IDENTIFICATION AND USE: Decane is a colorless liquid. It is used in organic synthesis, as a solvent, standardized hydrocarbon, and in jet-fuel research. HUMAN EXPOSURE AND TOXICITY: In tests with human subjects, solutions as strong as 30% produced no irritation when applied to skin and left for 24 hr. Decane is a simple asphyxiant and causes CNS depression in high concentrations. ANIMAL STUDIES: Rats exposed to decane vapor have been examined for lens opacities, but no cataracts were found. Rats exposed to 0.2 mL of decane by inhalation died within 24 hr by pulmonary edema and hemorrhaging. Decane is highly lipid-soluble and causes pulmonary pneumonitis when aspired into lungs. Animals showed signs of dyspnea, tachypnea, and cyanosis. In rats exposed by inhalation decane caused some limited, but statistically significant neurobehavioral effects at 5 g/cu m, with no effects at 1.5 g/cu m. Exposure of rats to 540 ppm of decane 18 hr/day, 7 days/week for 57 days stimulated weight gains and decreased the total white blood count, but no bone marrow changes or other organ changes were noted. Dermal application of undiluted decane to mice (0.1-0.15 g per mouse, 3 times a week for 50 weeks) caused fibrosis of the dermis, pigmentation, and some ulceration. Some animals also showed kidney effects and lung hemorrhaging. Mice treated with decane developed tumors on the backs, after exposure to ultraviolet radiation at wavelengths longer than 350 nm, generally considered noncarcinogenic. In rats no statistically significant treatment-related effects were observed at any dose level in any of the reproductive or developmental parameters. The following genotoxicity studies were negative: Ames assay - with and without metabolic activation - on Salmonella typhimurium; forward mutation on Chinese hamster (V79) lung cells; chromosomal aberrations cytogenetics assay on Chinese hamster (V79) lung cells; cell transformation and cotransformation with benzo(a)pyrene on Syrian hamster embryo cells; and intercellular communication on Syrian hamster embryo cells.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌物分类
对人类无致癌性(未列入国际癌症研究机构IARC清单)。
No indication of carcinogenicity to humans (not listed by IARC).
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 暴露途径
该物质可以通过吸入和摄入被身体吸收。
The substance can be absorbed into the body by inhalation and by ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
毒理性
  • 皮肤症状
干燥的皮肤。发红。
Dry skin. Redness.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
毒理性
  • 眼睛症状
红肿。疼痛。
Redness. Pain.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
吸收、分配和排泄
十碳正链烷,即癸烷,是喷气燃料-8(JP-8)蒸汽相中含量最高的成分之一,被选为代表半挥发性馏分,用于初步开发JP-8的生理学基础药代动力学(PBPK)模型。大鼠在32升的Leach室中以1200、781或273 ppm的时间加权平均浓度暴露于癸烷蒸气中4小时。收集了1200 ppm的时效样品以及781和273 ppm癸烷暴露的结束时的血液、大脑、肝脏、脂肪、骨髓、肺、皮肤和脾脏样品。癸烷的药代动力学不能用流量限制的假设和测量的体外组织/空气分配系数来描述。然后,使用流量限制(肝脏和肺)和扩散限制(大脑、骨髓、脂肪、皮肤和脾脏)方程开发了一个改进的癸烷PBPK模型,以描述血液和组织中癸烷的吸收和清除。通过拟合结束暴露时的药代动力学数据估计了血液/空气和组织/血液的分配系数值,并假定这反映了可用于与血液快速交换的癸烷。推测部分癸烷被隔离在体内的“深层”池中,无法与血液快速交换。PBPK模型预测能够较好地描述组织和血液动力学。为了验证模型,改进的癸烷PBPK模型在预测较低浓度癸烷蒸气的组织和血液浓度方面取得了混合的成功,这表明可能需要进一步改进模型以扩展到更低浓度的预测。
Decane, a 10-carbon n-alkane and one of the highest vapor phase constituents of jet propellent-8 (JP-8), was selected to represent the semivolatile fraction for the initial development of a physiologically based pharmacokinetic (PBPK) model for JP-8. Rats were exposed to decane vapors at time-weighted average concentrations of 1200, 781, or 273 ppm in a 32-L Leach chamber for 4 hr. Time-course samples for 1200 ppm and end-of-exposure samples for 781 and 273 ppm decane exposures were collected from blood, brain, liver, fat, bone marrow, lung, skin, and spleen. The pharmacokinetics of decane could not be described by flow-limited assumptions and measured in vitro tissue/air partition coefficients. A refined PBPK model for decane was then developed using flow-limited (liver and lung) and diffusion-limited (brain, bone marrow, fat, skin, and spleen) equations to describe the uptake and clearance of decane in the blood and tissues. Partition coefficient values for blood/air and tissue/blood were estimated by fitting end-of-exposure pharmacokinetic data and assumed to reflect the available decane for rapid exchange with blood. A portion of decane is speculated to be sequestered in "deep" pools in the body, unavailable for rapid exchange with blood. PBPK model predictions were adequate in describing the tissues and blood kinetics. For model validation, the refined PBPK model for decane had mixed successes at predicting tissue and blood concentrations for lower concentrations of decane vapor, suggesting that further improvements in the model may be necessary to extrapolate to lower concentrations.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
大鼠组织:气态和血液:气态分配系数(PCs)已通过瓶平衡法确定了辛烷、壬烷、癸烷、十一烷和十二烷(n-C8至n-C12正构烷)的值。n-C8至n-C12的血气PC值分别为3.1、5.8、8.1、20.4和24.6。随着碳链长度的增加,正构烷的脂溶性增加,这表明脂溶性是描述正构烷血气PC值的重要决定因素。肌肉:血液、肝脏:血液、大脑:血液和脂肪:血液的PC值分别为辛烷(1.0、1.9、1.4和247)、壬烷(0.8、1.9、3.8和274)、癸烷(0.9、2.0、4.8和328)、十一烷(0.7、1.5、1.7和529)和十二烷(1.2、1.9、19.8和671)。组织中脂肪的分配系数最大,肌肉的最小。十一烷的大脑:空气PC值与其他正构烷值不一致。使用这些正构烷的测量分配系数值,线性回归用于预测更大正构烷如十三烷、十四烷、十五烷、十六烷和十七烷(n-C13至n-C17)的组织(除大脑外)和血液:空气分配系数值。对于n-C8至n-C12,实测的组织:空气和血液:空气分配系数值与预测值之间有很好的一致性,这为较长链正构烷的分配系数预测提供了信心。
Rat tissue:air and blood:air partition coefficients (PCs) for octane, nonane, decane, undecane, and dodecane (n-C8 to n-C12 n-alkanes) were determined by vial equilibration. The blood:air PC values for n-C8 to n-C12 were 3.1, 5.8, 8.1, 20.4, and 24.6, respectively. The lipid solubility of n-alkanes increases with carbon length, suggesting that lipid solubility is an important determinant in describing n-alkane blood:air PC values. The muscle:blood, liver: blood, brain:blood, and fat:blood PC values were octane (1.0, 1.9, 1.4, and 247), nonane (0.8, 1.9, 3.8, and 274), decane (0.9, 2.0, 4.8, and 328), undecane (0.7, 1.5, 1.7, and 529), and dodecane (1.2, 1.9, 19.8, and 671), respectively. The tissue:blood PC values were greatest in fat and the least in muscle. The brain:air PC value for undecane was inconsistent with other n-alkane values. Using the measured partition coefficient values of these n-alkanes, linear regression was used to predict tissue (except brain) and blood:air partition coefficient values for larger n-alkanes, tridecane, tetradecane, pentadecane, hexadecane, and heptadecane (n-C13 to n-C17). Good agreement between measured and predicted tissue:air and blood:air partition coefficient values for n-C8 to n-Cl2 offer confidence in the partition coefficient predictions for longer chain n-alkanes.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
皮肤对含有超过八个碳原子(辛烷)的烷烃的吸收非常缓慢。C10-C12脂肪链的分布可能遵循与正辛烷相同的模式。/癸烷、十一烷和十二烷(C10-C12)/
Dermal absorption of alkanes with more than eight carbons (octane) occurs very slowly. The distribution of the C10-C12 aliphatics would likely follow the same pattern reported for n-octane. /Decane, undecane, and dodecane (C10-C12)/
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
癸烷主要通过吸入被吸收。
Absorption of decane occurs mainly by inhalation.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • TSCA:
    Yes
  • 危险等级:
    3
  • 危险品标志:
    Xn,F,N
  • 安全说明:
    S16,S23,S29,S33,S36/37,S61,S62,S9
  • 危险类别码:
    R67,R38,R66,R10,R11,R51/53,R62,R65,R48/20
  • WGK Germany:
    3
  • 海关编码:
    29011090
  • 危险品运输编号:
    UN 2247 3/PG 3
  • 危险类别:
    3
  • RTECS号:
    HD6550000
  • 包装等级:
    III
  • 危险标志:
    GHS02,GHS08
  • 危险性描述:
    H226,H304
  • 危险性防范说明:
    P301 + P310,P331
  • 储存条件:
    储存注意事项: - 储存在阴凉、通风的库房中。 - 远离火源和热源,库温不宜超过37℃。 - 保持容器密封。 - 应与氧化剂分开存放,切忌混储。 - 使用防爆型照明和通风设施。 - 禁止使用易产生火花的机械设备和工具。 - 储区应备有泄漏应急处理设备和合适的收容材料。

SDS

SDS:5f08892b6f9a3b1e994752ad3aa51592
查看
国标编号: 33506
CAS: 124-18-5
中文名称: 正癸烷
英文名称: decane;n-decyl hydride
别 名: 十碳烷
分子式: C 10 H 22 ;CH 3 (CH 2 ) 8 CH 3
分子量: 142.29
熔 点: -29.7℃
密 度: 相对密度(水=1)0.73;
蒸汽压: 46℃
溶解性: 不溶于水,可混溶于乙醇、乙醚
稳定性: 稳定
外观与性状: 无色液体
危险标记: 7(易燃液体)
用 途: 用作溶剂,及用于有机合成,也用于燃料研究

2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:吸入、口或经皮肤吸收对身体有害。其蒸气或雾对眼睛、皮肤、粘膜和呼吸道有刺激作用。吸入后可引起化学性肺炎、肺水肿。 二、毒理学资料及环境行为 急性毒性:LD506.4~12.8g/kg(小鼠经口);12.8~25.6g/kg(大鼠经口);LC5072300mg/m3,2小时(小鼠吸入) 致癌性:小鼠经皮最低中毒剂量(TDL0):25g/kg(52周,间歇),致肿瘤阳性。 危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇高热、明火能引起燃烧爆炸。与氧化剂能发生强烈反应。在火场中,受热的容器有爆炸危险。 燃烧(分解)产物:一氧化碳、二氧化碳。 3.现场应急监测方法: 4.实验室监测方法: 气相色谱法《空气中有害物质的测定方法》(第二版),杭士平主编 5.环境标准: 前苏联 车间空气中有害物质的最高容许浓度 10mg/m3 嗅觉阈浓度 6.3ppb 6.应急处理处置方法: 一、泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 二、防护措施 呼吸系统防护:空气中浓度较高时,应该佩戴自吸过滤式防毒面具(半面罩)。 眼睛防护:戴安全防护眼镜。 身体防护:穿防静电工作服。 手防护:戴防苯耐油手套。 其它:工作现场严禁吸烟。避免长期反复接触。 三、急救措施 皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量水,催吐。就医。 灭火方法:尽可能将容器从火场移至空旷处。灭火剂:泡沫、二氧化碳、干粉、砂土。用水灭火无效,但须用水冷却火场容器。用雾状水保护消防人员,用砂土堵逸出液体。


制备方法与用途

理化性质

癸烷是一种无色液体,熔点为-30℃,沸点为174℃,相对密度为0.7301(20/4℃),折光率为1.4114。它在空气中较为稳定,在高温下会燃烧。癸烷能溶解于烃类溶剂、石蜡油和苯中,但不溶于水,并存在于石蜡基石油中。癸烷与其他高级烷烃的混合物可作为凡士林、润滑剂及其他化工产品的原料。

化学性质

癸烷是一种无色液体,熔点为-30℃,沸点为174℃,相对密度为0.7301(20/4℃),折光率为1.4114,闪点为46℃。它能与醇和醚混溶,不溶于水。

用途

癸烷主要用于有机合成和燃料研究,并可用作中沸点溶剂,适用于仪器洗涤、干洗及印刷油墨的无臭溶剂。

生产方法

癸烷可通过溴戊烷制备。

类别
  • 易燃液体
  • 毒性分级:低毒
  • 急性毒性:吸入 - 小鼠 LC50: 72300 毫克/立方米/2小时
爆炸物危险特性

癸烷与空气混合可爆炸。

可燃性危险特性

遇到明火、高温或氧化剂时较易燃,燃烧过程中会产生刺激烟雾。

储运特性

存放于通风低温干燥的库房中,并应与其他氧化剂分开存放。

灭火剂

使用干粉、干砂、二氧化碳、泡沫或1211灭火剂进行扑灭。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2
    • 3

反应信息

  • 作为反应物:
    描述:
    癸烷 在 CYP153A16 作用下, 反应 8.0h, 生成 1,10-癸二醇
    参考文献:
    名称:
    Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666
    摘要:
    饱和烃的氧官能化是基础和应用化学中的一个重要目标。生物催化剂如细胞色素P450酶可以以非常选择性的方式将氧引入多种分子中,这可以用于精细化学品和大宗化学品的合成。来自CYP153A亚家族的细胞色素P450酶被描述为具有高末端区域选择性的烷烃羟化酶。在这里,我们报告了由来自海洋分枝杆菌(CYP153A16)和极地单胞菌(CYP153A P. sp.)的CYP153A酶催化的C5–C12烷烃和醇氧化反应的产物产率。对于所有反应,副产物的形成进行了详细描述。经过在大肠杆菌中克隆和表达后,纯化的单氧化酶的活性与变色龙还原蛋白(CamA)和变色龙还原酶(CamB)重新结合。尽管这两种酶系统都产生初级醇和α,ω-烷二醇,但它们对烷烃的氧化模式却有所不同。对于CYP153A P. sp.,观察到主要的ω-羟化活性,而CYP153A16则具备催化ω-羟化和α,ω-二羟化反应的能力。
    DOI:
    10.1039/c1ob05565h
  • 作为产物:
    描述:
    2-溴十一烷正丁基锂 、 9-butyl-9-borabicyclo[3.3.1]nonane 作用下, 生成 癸烷
    参考文献:
    名称:
    使用9,9-二正丁基-9-硼环[3.3.1]壬酸锂将叔烷基,苄基和烯丙基卤选择性还原为烃
    摘要:
    标题9-borabicyclo [3.3.1]壬烷(9-BBN)配合物(1)可以选择性地除去叔烷基,苄基和烯丙基卤,从而以优异的收率得到相应的烃,而不会伴随着对仲,伯和芳基的攻击衍生品。的还原顺式-和反式- 4 -吨-丁基- 1 -甲基环己基氯化物(2)与1给出4 -吨-丁基- 1 - methylcyclohexanes(3),在环己烷的配置的局部反转,而在苯给出热力学稳定的反式- 3为主。1,1-二甲基-5-己烯基氯化物的反应(4)和1,7,7- -三甲基二环[2.2.1]庚- 2 -基磺酰氯(8)配有1继续进行到碳离子中间特性的重排。要求1所述的还原-乙基- 1 -甲基戊基氯与1如下二阶速率方程。
    DOI:
    10.1016/s0040-4020(01)97982-7
  • 作为试剂:
    描述:
    2,4,4-三甲基-2-戊烯 在 MnII-bis-(1,10-phenanthroline) templated SBA-15 过氧乙酸癸烷 作用下, 以 乙腈 为溶剂, 反应 0.17h, 生成 2,3-环氧-2,4,4-三甲基戊烷
    参考文献:
    名称:
    通过金属模板/金属交换方法对离散的 Mn(II) 双苯配合物进行共价异质化:一种具有增强反应性的环氧化催化剂
    摘要:
    由于位点隔离可能带来的好处,例如增加催化剂稳定性、催化剂回收和产品分离,将分散的环氧化催化剂固定在固体载体上引起了相当大的关注。本文报道了一种合成金属模板/金属交换方法,可将共价连接的双-1,10-菲咯啉配位环境印记到高表面积介孔 SBA-15 二氧化硅上,并在重新加载锰后具有环氧化反应性。这种印迹材料与通过配体随机接枝合成的材料的比较表明,模板方法在各种配体负载下产生了更具重现性的、类似溶液的双 1,10-菲咯啉配位。烯烃与过乙酸的环氧化表明,印迹锰催化剂对环氧化物的产物选择性有所提高,底物范围更大,氧化剂的使用更有效,并且比其均相或接枝类似物具有更高的反应性,而不受配体负载的影响。然而,随机接枝的锰催化剂显示出随着配体负载而变化的反应性,而均相类似物降解三取代的烯烃并从顺式烯烃产生反式环氧化物产物。模板化催化剂的有效回收行为也是可能的。显示反应性随配体负载而变化,而均相类似物降解三取代
    DOI:
    10.1021/ja0742030
点击查看最新优质反应信息

文献信息

  • Application of Pd Nanoparticles Supported on Mesoporous Hollow Silica Nanospheres for the Efficient and Selective Semihydrogenation of Alkynes
    作者:Oscar Verho、Haoquan Zheng、Karl P. J. Gustafson、Anuja Nagendiran、Xiaodong Zou、Jan-E. Bäckvall
    DOI:10.1002/cctc.201501112
    日期:2016.2
    Herein, the preparation of a heterogeneous catalyst consisting of 1–2 nm sized Pd nanoparticles supported on amino‐functionalized mesoporous hollow silica nanospheres and its use for the semihydrogenation of mono‐ and disubstituted alkynes is reported. By utilizing this Pd nanocatalyst together with the green poisoning agent DMSO, high yields of the desired alkenes could be achieved, while suppressing
    在本文中,报道了由负载在氨基官能化介孔空心二氧化硅纳米球上的1-2 nm大小的Pd纳米颗粒组成的非均相催化剂的制备及其在单和双取代炔烃的半氢化反应中的应用。通过将此Pd纳米催化剂与绿色中毒剂DMSO一起使用,可以实现所需烯烃的高收率,同时抑制了烷烃过度还原的程度。令我们高兴的是,Pd纳米催化剂对炔烃部分表现出卓越的化学选择性,从而可以在其他可还原的官能团(例如卤素,羰基和硝基)存在下进行转化。
  • 氢化反应方法
    申请人:郑州大学
    公开号:CN111099986B
    公开(公告)日:2023-02-03
    本发明涉及一种氢化反应方法,属于有机合成技术领域。本发明的氢化反应方法,包括以下步骤:氢受体化合物、频哪醇硼烷、催化剂在质子氢存在的条件下于溶剂中进行氢转移反应,使得氢受体化合物进行氢化反应;所述催化剂为钯催化剂、铱催化剂、铑催化剂中的一种或两种以上;所述氢受体化合物包含碳碳双键、碳碳三键、碳氧双键、碳氮双键、氮氮双键、硝基、碳氮三键、环氧中的一种或两种以上的官能团。本发明的方法反应条件温和,易操作,收率高,反应时间短,底物适用范围广,适应于碳碳双键、碳碳三键、碳氧双键、碳氮双键、氮氮双键、硝基、碳氮三键、环氧官能团,具有较好的选择性,反应专一性强。
  • Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni‐Core–Shell Catalyst
    作者:Jie Gao、Rui Ma、Lu Feng、Yuefeng Liu、Ralf Jackstell、Rajenahally V. Jagadeesh、Matthias Beller
    DOI:10.1002/anie.202105492
    日期:2021.8.16
    selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which
    提出了各种烯烃的选择性氢化和氘化的通用方案。这些反应成功的关键是使用特定的镍-石墨壳基核壳结构催化剂,该催化剂可以通过浸渍碳上的硝酸镍并随后在氩气下于 450 °C 下煅烧来方便地制备。应用这种纳米结构催化剂,具有工业和商业重要性的末端烯烃和内部烯烃在环境条件下(室温,使用1巴氢气或1巴氘)进行选择性氢化和氘化,从而获得相应的烷烃和氘。标记烷烃的收率良好至极好。通过克级反应以及高效的催化剂回收实验证明了这种镍基加氢方案的合成效用和实用性。
  • Iron-Catalyzed Cross-Coupling of Unactivated Secondary Alkyl Thio Ethers and Sulfones with Aryl Grignard Reagents
    作者:Scott E. Denmark、Alexander J. Cresswell
    DOI:10.1021/jo402246h
    日期:2013.12.20
    ed cross-coupling are described. Initial studies focused on discerning the structural and electronic features of the organosulfur substrate that enable the challenging oxidative addition to the C(sp3)–S bond. Through extensive optimization efforts, an Fe(acac)3-catalyzed cross-coupling of unactivated alkyl aryl thio ethers with aryl Grignard reagents was realized in which a nitrogen “directing group”
    描述了未活化的脂肪族硫化合物作为过渡金属催化交叉偶联中的亲电试剂的首次系统研究。最初的研究侧重于识别有机硫底物的结构和电子特征,这些特征能够对 C(sp 3 )-S 键进行具有挑战性的氧化加成。通过广泛的优化工作,实现了未活化的烷基芳基硫醚与芳基格氏试剂的 Fe(acac) 3催化交叉偶联,其中硫醚 S-芳基部分上的氮“导向基团”起到了关键作用促进氧化加成步骤。此外,发现烷基苯砜是 Fe(acac) 3 中有效的亲电试剂。-催化与芳基格氏试剂的交叉偶联。对于后一类亲电试剂,对各种反应参数的彻底评估表明,过量的 TMEDA(8.0 当量)反应效率显着提高。优化的反应方案用于评估该方法在有机镁亲核试剂和砜亲电试剂方面的范围。
  • Iridium-Catalyzed Direct Dehydroxylation of Alcohols
    作者:Jian-Lin Huang、Xi-Jie Dai、Chao-Jun Li
    DOI:10.1002/ejoc.201301293
    日期:2013.10
    Iridium-catalyzed direct dehydroxylation of alcohols with hydrazine was developed through a combination of the oxidation of alcohols and the Wolff–Kishner reduction. This protocol is simple to perform and highly efficient for a series of primary, benzylic and allylic alcohols.
    通过将醇的氧化和 Wolff-Kishner 还原相结合,开发了铱催化的醇与肼的直接脱羟基。对于一系列伯醇、苄醇和烯丙醇,该协议易于执行且高效。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台