Chalcones represent a class of small drug/druglike molecules with different and multitarget biological activities. Small multi-target drugs have attracted considerable interest in the last decade due their advantages in the treatment of complex and multifactorial diseases, since “one drug-one target” therapies have failed in many cases to demonstrate clinical efficacy. In this context, we designed and synthesized potential new small multi-target agents with lipoxygenase (LOX), acetyl cholinesterase (AChE) and lipid peroxidation inhibitory activities, as well as antioxidant activity based on 2-/4- hydroxy-chalcones and the bis-etherified bis-chalcone skeleton. Furthermore, the synthesized molecules were evaluated for their cytotoxicity. Simple chalcone b4 presents significant inhibitory activity against the 15-human LOX with an IC50 value 9.5 µM, interesting anti-AChE activity, and anti-lipid peroxidation behavior. Bis-etherified chalcone c12 is the most potent inhibitor of AChE within the bis-etherified bis-chalcones followed by c11. Bis-chalcones c11 and c12 were found to combine anti-LOX, anti-AchE, and anti-lipid peroxidation activities. It seems that the anti-lipid peroxidation activity supports the anti-LOX activity for the significantly active bis-chalcones. Our circular dichroism (CD) study identified two structures capable of interfering with the aggregation process of Aβ. Compounds c2 and c4 display additional protective actions against Alzheimer’s disease (AD) and add to the pleiotropic profile of the chalcone derivatives. Predicted results indicate that the majority of the compounds with the exception of c11 (144 Å) can cross the Blood Brain Barrier (BBB) and act in CNS. The results led us to propose new leads and to conclude that the presence of a double enone group supports better biological activities.
查耳酮类药物代表了一类具有多种和多重靶点生物活性的小分子药物或类药分子。在过去的十年里,小型多靶点药物因其能够治疗复杂和多因素疾病的优点而引起了相当大的兴趣,因为“一种药物一个靶点”的治疗方法在许多情况下未能显示出临床疗效。在这种情况下,我们设计并合成了具有潜在的新小型多靶点药物,具有脂氧合酶(LOX)、乙酰胆碱酯酶(AChE)和脂质过氧化抑制活性,以及基于2-/4-羟基查耳酮和双醚化双查耳酮骨架的抗氧化活性。此外,合成的分子还对其细胞毒性进行了评估。简单的查耳酮b4对15-人LOX具有显著的抑制活性,IC50值为9.5 µM,具有有趣的抗AChE活性和抗脂质过氧化行为。双醚化查耳酮c12是双醚化双查耳酮中对AChE最有效的抑制剂,其次是c11。发现双查耳酮c11和c12具有抗LOX、抗AchE和抗脂质过氧化活性。看来抗脂质过氧化活性支持显著活性的双查耳酮的抗LOX活性。我们的圆二色性(CD)研究发现两种结构能够干扰Aβ的聚集过程。化合物c2和c4显示了额外的保护作用,防止阿尔茨海默病(AD)的发生,并增加了查耳酮衍生物的多效性特征。预测结果表明,除了c11(144 Å)之外,大多数化合物能够穿越血脑屏障(BBB)并在中枢神经系统发挥作用。这些结果使我们提出了新的线索,并得出结论,存在一个双烯酮基团可以支持更好的生物活性。