摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

麻黄碱 | 299-42-3

中文名称
麻黄碱
中文别名
左旋麻黄碱;麻黄素;2-甲氨基-1-苯基-1-丙醇;1-甲基氨基苄甲醇;(1R,2S)-2-甲氨基-苯丙烷-1-醇;1R,2S-麻黄素;1-N,2-二甲基-β-羟基苯乙胺
英文名称
ephedrine
英文别名
(1R,2S)-ephedrine;l-ephedrine;(-)-(1R,2S)-2-methylamino-1-phenyl-1-propanol;(1R,2S)-2-(methylamino)-1-phenylpropan-1-ol;Ephedrin;(1R,2S)-(-)-pseudoephedrine;Eph
麻黄碱化学式
CAS
299-42-3
化学式
C10H15NO
mdl
——
分子量
165.235
InChiKey
KWGRBVOPPLSCSI-WPRPVWTQSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.9
  • 重原子数:
    12
  • 可旋转键数:
    3
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.4
  • 拓扑面积:
    32.3
  • 氢给体数:
    2
  • 氢受体数:
    2

ADMET

代谢
麻黄碱在体内大部分未经代谢。麻黄碱可以被N-去甲基化为norephedrine(去甲麻黄碱),或者去甲基化和脱氨成为苯甲酸共轭物和1,2-羟基苯乙烷。
Ephedrine is largely unmetabolized in the body. Ephedrine can be N-demethylated to norephedrine, or demethylated and deaminized to benzoic acid conjugates and 1,2-hydroxypropylbenzene.
来源:DrugBank
代谢
...在服用了单一临床剂量的麻黄碱(EPH)、伪麻黄碱(PEPH)、苯丙醇胺(PPA)、甲基麻黄碱(MEPH)或茶硷(n=3,每种药物)后,尿液样本经过叔丁基甲基醚(TBME)提取和三氟乙酸(TFAA)衍生化处理,然后进行气相色谱-质谱(GC-MS)分析。大多数麻黄碱类药物以原形在尿液中排出,包括EPH(40.9%)、PEPH(72.2%)和PPA(59.3%)。然而,只有相对少量的MEPH(15.5%)以原形在尿液中排出。此外,检测到PPA(1.6%)和茶硷(0.7%)分别是EPH和PEPH的代谢物。尿液中EPH、PEPH和PPA的峰值出现在2-6小时,在大约24-48小时后从尿液中消失。对于MEPH,排泄峰值从4小时延长到12小时,在大约48小时后无法检测到。单次临床剂量的EPH(25毫克)如果在给药后大约8小时内进行尿液检测,可能会超过运动药物检测的阈值水平(10微克/毫升)。然而,单次剂量的MEPH(20毫克)从未达到阈值值(10微克/毫升)。
... After /volunteers (n=3 for each drug) consumed a single clinical dose of ephedrine (EPH), pseudoephedrine (PEPH), phenylpropanolamine (PPA), methylephedrine (MEPH) or cathine/..., urine samples were subjected to tert-butyl-methyl-ether (TBME) extraction and trifluoroacetic acid (TFAA) derivatization before gas chromatography-mass spectrometry (GC-MS) analysis. Most ephedrines were excreted unchanged in urine, including EPH (40.9%), PEPH (72.2%), and PPA (59.3%). However, only a relatively small amount of MEPH (15.5%) was excreted unchanged in urine. In addition, a trace amount of PPA (1.6%) and cathine (0.7%) was found to be the metabolites of EPH and PEPH, respectively. Urinary EPH, PEPH, and PPA reached peaks at 2-6 hr and disappeared in urine at approximately 24-48 hr post-administration. For MEPH, the peaks of excretion extended from 4 to 12 hr post-administration and were undetectable at approximately 48 hr. A single clinical dose of EPH (25 mg) may exceed threshold level (10 ug/mL) in sport drug testing if the urine samples are tested within approximately 8 hr post-administration. However, a single dose of MEPH (20 mg) never reached the threshold value (10 ug/mL).
来源:Hazardous Substances Data Bank (HSDB)
代谢
人类、狗和几种啮齿类动物对麻黄碱的代谢主要通过三种反应进行:芳香族羟基化、N-去甲基化和氧化脱氨。麻黄碱的代谢程度和主要代谢物在不同物种之间在数量上有差异。在大鼠中芳香族羟基化的程度最高,其次是兔、豚鼠和狗,而在人类中没有观察到芳香族羟基化。麻黄碱的N-去甲基化在兔中程度最高,其次是狗、豚鼠、大鼠和人类。脱氨在兔中程度最高,其次是人类和大鼠。麻黄碱在人体内通过N-去甲基化代谢的比例为8-20%,生成苯丙醇胺(PPA)。口服剂量的麻黄碱有4-13%经过氧化脱氨,生成1-苯基丙烷-1,2-二醇,并进一步发生侧链氧化,生成苯甲酸和苯甲酸甘氨酸。
The metabolism of ephedrine in humans, dogs and several species of rodents proceeds primarily by three reactions; aromatic hydroxylation, N-demethylation, and oxidative deamination. The extent to which ephedrine is metabolized and the major metabolites vary quantitatively between species. The extent of aromatic hydroxylation is greatest in rats, followed by rabbits, guinea pigs, and dogs, with no aromatic hydroxylation observed in humans. N-demethylation of ephedrine is greatest in rabbits followed by dogs, guinea pigs, rats, and humans. Deamination is greatest in rabbits, followed by humans and rats. Ephedrine, 8-20%, is metabolized in humans by N-demethylation to /phenylpropanolamin/ PPA. A total of 4-13% of an oral dose of ephedrine undergoes oxidative deamination yielding 1-phenylpropan-1,2-diol and further side-chain oxidation to benzoic acid and hippuric acid.
来源:Hazardous Substances Data Bank (HSDB)
代谢
产量L-去甲麻黄碱和兔苯甘醇。/来自表格/
Yields L-norephedrine and phenylglycol in rabbits. /from table/
来源:Hazardous Substances Data Bank (HSDB)
代谢
消除途径:主要经肾 半衰期:3-6小时
Route of Elimination: mainly renal Half Life: 3-6 hours
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
识别:麻黄碱是一种无色或白色的固体粉末或晶体。它具有苦味,无臭或略有芳香。它可溶于水、酒精、氯仿、醚、甘油、橄榄油和液态石蜡。麻黄碱和它的光学异构体伪麻黄碱在结构上与甲基苯丙胺非常相似。在非法毒品实验室中,通过简单的脱氢反应可以将麻黄碱制成甲基苯丙胺。适应症:最重要的用途是:作为支气管扩张剂;鼻腔减充血剂;治疗Stokes-Adams综合症;作为脊髓麻醉中的散瞳剂和高血压药。它还作为草药减肥补充剂,以马黄为名作为厌食剂和CNS兴奋剂。人体暴露:禁忌症:心脏病;高血压;甲亢;嗜铬细胞瘤和闭角青光眼。麻黄碱不应给予正在接受MAOI治疗的患者(或在过去14天内停止治疗的患者)。在患有前列腺增生或肾损害的患者中应谨慎使用。暴露途径:口服:滥用含有麻黄碱的减肥药片是一种常见现象。吸入:麻黄碱盐用作缓解感冒或鼻炎引起的鼻塞的鼻滴或喷雾。麻黄碱可以通过鼻途径被对其血管收缩效果产生依赖的受试者滥用。皮肤:作为软膏,吸收良好。眼:0.1%的眼药水对结膜炎引起的充血有效。注射:皮下或肌肉注射。动力学:暴露途径的吸收:麻黄碱从胃肠道中被迅速且完全吸收;血浆峰浓度在摄入后1小时达到。生物半衰期按暴露途径:它具有3到6小时的血浆半衰期,具体取决于尿液的pH值。在一名有大量过量的情况下,与治疗剂量相比,半衰期没有变化。代谢:只有少量麻黄碱在肝脏中被代谢。排泄按暴露途径:它主要不变地在尿液中排出,伴有一些脱氨代谢物和N-脱甲基代谢物。在酸性尿液中,排泄增强。作用方式:毒动力学:麻黄碱可以在肾上腺素受体和神经元去甲肾上腺素释放上产生刺激。药动力学:麻黄碱具有α-和β-肾上腺素活性,以及对受体的直接和间接影响。它通过增加心输出量和诱导外周血管收缩来提高血压。它可以产生支气管扩张。在局部应用中,它会导致瞳孔散大。在过量时,主要的代谢效应是高血糖和低钾血症。麻黄碱是一种中枢作用的呼吸兴奋剂,可以增加运动活动。相互作用:有报道称,在使用帕罗西汀和含有麻黄碱的非处方感冒药的患者中出现了血清素综合征。麻黄碱和单胺氧化酶抑制剂的组合可以产生危及生命的反应。在给予环丙烷、氟烷或其他挥发性麻醉剂的患者中也应避免使用。如果给予接受心脏糖苷、奎尼丁或三环类抗抑郁药、麦角生物碱和催产素的患者,可能会增加心律失常的风险。主要不良反应:中枢作用拟交感神经药包括:震颤、恐惧、焦虑、混乱、易怒、失眠和精神病状态。在麻黄碱过量后,还可能出现偏执性精神病、妄想和幻觉。对心血管系统的影响是复杂的:血管收缩、高血压或低血压和心动过缓、心动过速、心悸、心脏骤停。在长期局部使用中,它可能导致局部缺血。临床效果急性中毒:摄入:摄入高剂量麻黄碱的早期临床表现为恶心和呕吐,随后是不眠、心律失常、心肌缺血、激动、精神病和癫痫。注射暴露:麻黄碱的注射使用可能导致由于动脉压升高而引起脑内出血。已经描述了室性心律失常。摄入:已经描述的神经系统症状包括头痛、焦虑、震颤、失眠、眩晕、癫痫。已经报道了几例精神病。与麻黄碱的慢性使用相关的心血管疾病可能包括胸痛、高血压、心律失常、心肌梗死、脑血管炎和中风。皮肤暴露:麻黄碱的局部应用可能导致接触性皮炎。注射暴露:麻黄碱的静脉使用引起的效应与口服摄入相似。其他:麻黄碱作为鼻腔喷雾或滴剂局部应用时的血管收缩效果可能导致局部缺血。病程、预后、死因:麻黄碱过量的早期临床表现为恶心和呕吐,随后是头痛、激动、焦虑、震颤、癫痫、心动过速和高血压危机。血压严重升高可能导致脑出血和心肌梗死。室性心律失常可能进展为心脏骤停和死亡。尽管有死亡报告,但预后通常良好。心血管:最常见的症状是动脉高血压和心动过速;室性心律失常、胸痛、心肌梗死、缺血性或出血性中风、心脏骤停可能会很少发生。呼吸系统:呼吸刺激、支气管扩张、肺水肿和呼吸暂停。神经系统:中枢神经系统:中枢神经系统刺激:焦虑、激动、震颤
IDENTIFICATION: Ephedrine is a colorless or white solid powder or crystals. It has a bitter taste and is odorless or slight aromatic odor. It is soluble in water, alcohol, chloroform, ether, glycerol, olive oil and in liquid paraffin. Ephedrine and its optical isomer pseudoephedrine are structurally very similar to methamphetamine. In illicit drug laboratories simple dehydrogenation is used to make methamphetamine from ephedrine. Indications: The most important uses are: as a bronchodilator; nasal decongestant; and treatment for syndrome of Stokes-Adams; as a mydriatic and hypertensor in the spinal anesthesia. It is also used as an herbal diet supplement under the name Ma-huang as an anorectic and CNS stimulant. HUMAN EXPOSURE: Contraindications: Cardiovascular disease; hypertension; hyperthyroidism; pheochromocytoma and closed angle glaucoma. Ephedrine should not be given in patients being treated with MAOI (or have stopped treatment in the last 14 days). It should be used with caution in patients with prostatic enlargement or with renal impairment. Routes of exposure: Oral: Abuse of ephedrine-containing diet pills is a common occurrence. Inhalation: Ephedrine salts are used as nasal drops or sprays in the relief of nasal congestion associated with cold or rhinitis. Ephedrine can be abused by the nasal route by subjects who have developed dependence to its vasoconstrictive effect. Dermal: As an ointment is well absorbed. Eye: Eye-drops at 0.1% are effective in congestion of conjunctival allergy. Parenteral: Subcutaneous or intramuscular injections. Kinetics: Absorption by route of exposure: Ephedrine is readily and completely absorbed from the gastrointestinal tract; plasma peak concentrations are reached an hour after ingestion. Biological half-life by route of exposure: It has a plasma half-life ranging from 3 to 6 hours depending on urinary pH. No change in half-life from that seen with therapeutic dosing was observed in an otherwise healthy patient with massive overdose. Metabolism: Only a small amount of ephedrine is metabolized in the liver. Elimination by route of exposure: It is largely excreted unchanged in the urine, with some deaminated metabolites and N-demethylated metabolites. Elimination is enhanced in acid urine. Mode of action: Toxicodynamics: Ephedrine can produce stimulation at the adrenergic receptors and neuronal norepinephrine release. Pharmacodynamics: Ephedrine has both alpha- and beta-adrenergic activities, and both direct and indirect effects on receptors. It raises blood pressure both by increasing cardiac output and inducing peripheral vasoconstriction. It can produce bronchodilation. In local application it causes pupils dilation. The main metabolic effects in overdose are hyperglycemia and hypokalemia. Ephedrine is a centrally acting respiratory stimulant and can increase motor activity. Interactions: A serotonin syndrome has been reported in a patient taking paroxetine and an over the counter cold medicine containing ephedrine. Combination of ephedrine and a monoamine oxidase inhibitor can produce life-threatening reactions. It should also be avoided in patients undergoing anesthesia with cyclopropane, halothane or other volatile anesthesia. An increased risk of arrhythmias may occur if given to patients receiving cardiac glycosides, quinidine or tricyclic antidepressants, ergot alkaloids and oxytocin. Main adverse effects: Central effects of sympathomimetic agents include: tremor, fear, anxiety, confusion, irritability, insomnia, and psychotic states. Paranoid psychosis, delusions and hallucinations may also follow ephedrine overdose. Effects on the cardiovascular system are complex: vasoconstriction, hypertension, or hypotension and bradycardia, tachycardia, palpitations, cardiac arrest. It can cause local ischemia in chronic topical use. Clinical effects Acute poisoning: Ingestion: Early clinical manifestations of ingestion of high doses of ephedrine consist of nausea and vomiting, followed by insomnia, cardiac arrhythmia, myocardial ischemia, agitation, psychosis and seizures. Parenteral exposure: The parenteral use of ephedrine may cause intracerebral hemorrhage as a result of a rise in arterial pressure. Ventricular arrhythmias have been described. Ingestion: Neurological symptoms that have been described include headache, anxiety, tremor, insomnia, dizziness, seizures. Several cases of psychosis have been reported. Cardiovascular disorders associated with the chronic use of ephedrine may include chest pain, hypertension, arrhythmia, myocardial infarction, cerebral vasculitis and stroke. Skin exposure: Local applications of ephedrine may cause contact dermatitis. Parenteral exposure: The intravenous use of ephedrine causes similar effects as oral ingestion. Other: The vasoconstrictive effects of ephedrine applied topically as nasal spray or drops may cause local ischemia. Course, prognosis, cause of death: Early clinical manifestations of ephedrine overdose consist of nausea and vomiting, followed by headache, agitation, anxiety, tremor, seizures, tachycardia and hypertensive crisis. Severe rise in blood pressure may produce cerebral hemorrhage and myocardial infarction. Ventricular arrhythmia may progress to cardiac arrest and death. Although fatalities have been reported the prognosis is usually good. Systematic description of clinical effects: Cardiovascular: The most common symptoms are arterial hypertension and tachycardia; ventricular arrhythmia, chest pain, myocardial infarction, ischemic or hemorrhagic stroke, cardiac arrest may rarely occur. Respiratory: Respiratory stimulation, bronchodilation, pulmonary edema and apnea. Neurological: CNS: CNS stimulation: anxiety, agitation, tremor, mental confusion, hallucinations, mania, paranoid psychosis may occur; convulsions have been reported. Autonomic nervous system: Ephedrine causes stimulation of the sympathetic nervous system acting on both alpha and beta receptors. Symptoms include tachycardia, arterial hypertension, tremor, sweating, mydriasis. Skeletal and smooth muscle: Ephedrine produces relaxation of smooth muscle. In overdose it may also cause rhabdomyolysis. Gastrointestinal: Nausea and vomiting are common. Urinary: Ephedrine relaxes the vesical detrusor muscle, and increases contraction of the vesical sphincter (alpha agonist action), and can produce acute retention of urine. Dermatological: Eye, ear, nose, throat: local effects: Chronic administration of nasal drops or spray can result in rebound nasal congestion and rhinorrhea. Hematological: Leukopenia. Metabolic: Acid base disturbances and metabolic acidosis or has been observed. Fluid and electrolyte disturbances: Hypokalemia resulting from intracellular shift. Allergic reactions: Contact dermatitis after local application. Sensitization and systemic allergic reactions (severe eczema) have been reported after oral administration. Other clinical effects: Special risks: Ephedrine is present in breast-milk in sufficient concentrations to be harmful to the baby, and is contraindicated in women who are breast-feeding. Patients with ischemic heart disease, hypertension, acute angle glaucoma, hyperthyroidism, prostatic enlargement, or taking monoamine oxidase inhibitor antidepressants should also avoid ephedrine. Other: Chronic use can lead to tolerance with dependence. Ephedrine abuse is a common occurrence and has been associated with several deaths.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
麻黄碱是一种胆碱酯酶或乙酰胆碱酯酶(AChE)抑制剂。胆碱酯酶抑制剂(或“抗胆碱酯酶”)抑制乙酰胆碱酯酶的作用。由于其基本功能,干扰乙酰胆碱酯酶作用的化学物质是强大的神经毒素,低剂量时会导致过度流涎和眼泪,随后是肌肉痉挛,最终导致死亡。神经气体和许多用于杀虫剂的物质已被证明通过结合乙酰胆碱酯酶活性位点的丝氨酸,完全抑制该酶。乙酰胆碱酯酶分解神经递质乙酰胆碱,该递质在神经和肌肉接头处释放,以使肌肉或器官放松。乙酰胆碱酯酶抑制的结果是乙酰胆碱积聚并继续发挥作用,使得任何神经冲动不断传递,肌肉收缩不会停止。最常见的乙酰胆碱酯酶抑制剂之一是基于磷的化合物,它们被设计用来结合到酶的活性位点上。结构要求是一个带有两个亲脂性基团的磷原子,一个离去基团(如卤素或硫氰酸盐),以及一个末端的氧。
Ephedrine is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen.
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 药物性肝损伤
化合物:麻黄碱
Compound:ephedrine
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
DILI 注释:无 DILI(药物性肝损伤)担忧
DILI Annotation:No-DILI-Concern
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
标签部分:无匹配
Label Section:No match
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
吸收、分配和排泄
  • 吸收
口服麻黄碱的平均Cmax为79.5ng/mL,Tmax为1.81小时,生物利用度为88%。
Oral ephedrine reaches an average Cmax of 79.5ng/mL, with a Tmax of 1.81h, and a bioavailability of 88%.
来源:DrugBank
吸收、分配和排泄
  • 消除途径
麻黄碱主要在尿液中消除。大约60%以未代谢的母化合物形式消除,13%以苯甲酸结合物形式消除,1%以1,2-二羟基丙基苯形式消除。
Ephedrine is mainly eliminated in the urine. Approximately 60% is eliminated as the unmetabolized parent compound, 13% as benzoic acid conjugates, and 1% as 1,2-dihydroxypropylbenzene.
来源:DrugBank
吸收、分配和排泄
  • 分布容积
口服麻黄碱的平均分布体积为215.6升。
Oral ephedrine has an average volume of distribution of 215.6L.
来源:DrugBank
吸收、分配和排泄
  • 清除
口服麻黄碱的清除率为23.3升/小时,但患者间的变异性很大。
Oral ephedrine has a clearance of 23.3L/h but there is a high degree of inter-patient variability.
来源:DrugBank
吸收、分配和排泄
Ephedrine是一种兴奋剂,通过胎盘传递给胎儿的能力为母体血液水平的70%。Ephedrine还会分泌在母乳中。
Placental transfer of ephedrine occurs at 70% of the maternal blood levels. Ephedrine is also excreted in breast milk.
来源:Hazardous Substances Data Bank (HSDB)

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2
    • 3
    • 4
    • 5

反应信息

  • 作为反应物:
    描述:
    麻黄碱叔丁基过氧化氢 、 C20H22CoN12O6S3 作用下, 以 为溶剂, 反应 0.17h, 以72%的产率得到(S)-methcathinone
    参考文献:
    名称:
    铜 (II) 和钴 (II) 四唑-糖精配合物作为仲醇氧化的有效催化剂
    摘要:
    摘要 首次合成了包含 2-甲基四唑-糖精二齿 N,N-螯合配体的单核 Cu(II) 和 Co(II) 配合物,并在无溶剂和微波辅助条件下作为均相催化仲醇氧化进行了测试。使用含水叔丁基过氧化氢 (TBHP) 作为氧化剂的协议。开发的催化体系表现出广泛的官能团相容性,允许将各种仲醇(包括烯丙醇)高效和选择性地转化为相应的酮。催化剂的典型含量为 0.2 mol%,在 20-50 W 微波照射下,大多数反应在 10 分钟内完成,TON 高达 5.5 × 102 和 TOF 高达 1.1 × 104 h-1。没有使用添加剂和助氧化剂,而 TEMPO (2,2,6, 6-tetramethyl-1-piperidinyloxyl) 在大多数情况下充当抑制剂。概述了涉及新催化系统的合理反应机制。
    DOI:
    10.1016/j.molcata.2016.10.023
  • 作为产物:
    描述:
    甲卡西酮 在 sodium tetrahydroborate 作用下, 生成 麻黄碱
    参考文献:
    名称:
    Takamatsu, Yakugaku Zasshi/Journal of the Pharmaceutical Society of Japan, 1956, vol. 76, p. 1227
    摘要:
    DOI:
  • 作为试剂:
    参考文献:
    名称:
    Meldrum 酸衍生受体的实用不对称共轭炔基化:获得手性 β-炔基酸
    摘要:
    炔基亲核试剂的对映选择性共轭加成一直是合成化学中长期存在的挑战。本文描述了使用辛可尼丁 (<$100/kg) 作为手性介质的 Meldrum 酸衍生受体的高度实用的不对称共轭炔基化。该过程提供了获得手性β-炔基酸的实际途径。该方法的值得注意的属性是其广泛的范围、高度的功能组兼容性和易于扩展。
    DOI:
    10.1021/ja909105s
点击查看最新优质反应信息

文献信息

  • [EN] NOVEL ANTIVIRAL COMPOUNDS<br/>[FR] NOUVEAUX COMPOSÉS ANTIVIRAUX
    申请人:UNIV LEUVEN KATH
    公开号:WO2014170368A1
    公开(公告)日:2014-10-23
    The present invention relates to a series of novel compounds and derivatives thereof, methods to prevent or treat viral infections by using the novel compounds, processes for their preparation, their use to treat or prevent viral infections and their use to manufacture a medicine to treat or prevent viral infections, preferably infections with viruses belonging to the family of the Togaviridae and more preferably infections with chikungunya virus (CHIKV).
    本发明涉及一系列新化合物及其衍生物,利用这些新化合物预防或治疗病毒感染的方法,以及它们的制备过程,用于治疗或预防病毒感染以及用于制造治疗或预防病毒感染的药物,最好是用于治疗属于Togaviridae家族的病毒,更好地是用于治疗寨卡病毒感染。
  • Integrase inhibitors
    申请人:Cai R. Zhenhong
    公开号:US20080058315A1
    公开(公告)日:2008-03-06
    Tricyclic compounds, protected intermediates thereof, and methods for inhibition of HIV-integrase are disclosed.
    三环化合物,其受保护的中间体,以及用于抑制HIV整合酶的方法被披露。
  • 3-Aminocyclopentanecarboxamides as modulators of chemokine receptors
    申请人:Xue Chu-Biao
    公开号:US20060004018A1
    公开(公告)日:2006-01-05
    The present invention is directed to compounds of Formula I: which are modulators of chemokine receptors. The compounds of the invention, and compositions thereof, are useful in the treatment of diseases related to chemokine receptor expression and/or activity.
    本发明涉及以下式的化合物: 这些化合物是趋化因子受体的调节剂。本发明的化合物及其组合物在治疗与趋化因子受体表达和/或活性相关的疾病方面是有用的。
  • CYCLOPROPYLAMINES AS LSD1 INHIBITORS
    申请人:Incyte Corporation
    公开号:US20150225379A1
    公开(公告)日:2015-08-13
    The present invention is directed to cyclopropylamine derivatives which are LSD1 inhibitors useful in the treatment of diseases such as cancer.
    本发明涉及环丙胺衍生物,这些衍生物是LSD1抑制剂,可用于治疗癌症等疾病。
  • CYCLIC ETHER PYRAZOL-4-YL-HETEROCYCLYL-CARBOXAMIDE COMPOUNDS AND METHODS OF USE
    申请人:Genentech, Inc.
    公开号:US20140088117A1
    公开(公告)日:2014-03-27
    Cyclic ether pyrazol-4-yl-heterocyclyl-carboxamide compounds of Formula I, including stereoisomers, geometric isomers, tautomers, and pharmaceutically acceptable salts thereof, wherein R 2 is a cyclic ether and X is thiazolyl, pyrazinyl, pyridinyl, or pyrimidinyl, are useful for inhibiting Pim kinase, and for treating disorders such as cancer mediated by Pim kinase. Methods of using compounds of Formula I for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions, are disclosed.
    公式I的环醚吡唑-4-基-杂环基-羧酰胺化合物,包括立体异构体、几何异构体、互变异构体和其药学上可接受的盐,其中R2为环醚,X为噻唑基、吡啶基、吡啶基或嘧啶基,可用于抑制Pim激酶,并用于治疗由Pim激酶介导的癌症等疾病。公开了使用公式I化合物进行体外、体内和体内诊断、预防或治疗哺乳动物细胞中的这类疾病或相关病理条件的方法。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
mass
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐