摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,1-二杂苯[B]硫代苯甲基N-琥珀酸胺碳酸盐 | 197244-91-0

中文名称
1,1-二杂苯[B]硫代苯甲基N-琥珀酸胺碳酸盐
中文别名
(1,1-二氧苯并噻吩-2-基)甲基(2,5-二氧代吡咯烷-1-基)碳酸酯;(1,1-二氧-苯并噻吩-2-甲基)丁二酸亚胺基甲酸酯,95;(1,1-二氧-苯并噻吩-2-甲基)丁二酸亚胺基甲酸酯
英文名称
1,1-dioxobenzo[b]thiophen-2-ylmethyl N-succimidyl carbonate
英文别名
(1,1-Dioxidobenzo[b]thiophen-2-yl)methyl (2,5-dioxopyrrolidin-1-yl) carbonate;(1,1-dioxo-1-benzothiophen-2-yl)methyl (2,5-dioxopyrrolidin-1-yl) carbonate
1,1-二杂苯[B]硫代苯甲基N-琥珀酸胺碳酸盐化学式
CAS
197244-91-0
化学式
C14H11NO7S
mdl
——
分子量
337.31
InChiKey
XBVMGLSMCWWRLS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    ~165 °C (dec.)
  • 稳定性/保质期:
    避免与氧化物和水分接触。

计算性质

  • 辛醇/水分配系数(LogP):
    0.5
  • 重原子数:
    23
  • 可旋转键数:
    5
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.21
  • 拓扑面积:
    115
  • 氢给体数:
    0
  • 氢受体数:
    7

安全信息

  • WGK Germany:
    3
  • 海关编码:
    2934999090
  • 安全说明:
    S22
  • 储存条件:
    保存方法:存放在密闭、阴凉和干燥的地方。

SDS

SDS:6b1c93f2457fbe500d84e72ab7f97164
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2
    • 3

反应信息

  • 作为反应物:
    描述:
    1,1-二杂苯[B]硫代苯甲基N-琥珀酸胺碳酸盐吡啶三聚氟氰三乙胺 作用下, 以 二氯甲烷乙腈 为溶剂, 反应 2.25h, 生成 Bsmoc-Asp(O-t-Bu)-F
    参考文献:
    名称:
    The 1,1-Dioxobenzo[b]thiophene-2-ylmethyloxycarbonyl (Bsmoc) Amino-Protecting Group
    摘要:
    Full details are presented for use of the Bsmoc amino-protecting group for both solid phase and rapid continuous solution syntheses. Application to the latter methodology represents a significant improvement over the corresponding Fmoc-based method for rapid solution synthesis due to the opportunity to use water or saturated sodium-chloride solution rather than an acidic phosphate buffer to remove all byproducts, with consequent cleaner phase separation and higher yields of the growing peptide. Comparison of the Bsmoc and Bspoc functions showed that the former, because of steric hindrance, does not suffer from the competitive or premature deblocking observed with the Bspoc system. Because of its incorporation of a styrene chromophore, resin loading of Bsmoc amino acids could be followed as has previously been shown for the Fmoc analogues. Applications of Bsmoc chemistry to peptide sequences incorporating the base sensitive Asp-Gly unit gave less contamination due to aminosuccinimide formation than comparable syntheses involving standard Fmoc chemistry because a weaker or less concentrated base could be used in the deblocking step. Experimental details are presented for building up peptides in solution via the continuous methodology. Deblockings involved the use of insoluble piperazino silica as well as the polyamine TAEA which simplified aqueous separation of the growing, but nonisolated peptide product, from excess acylating agent and other side products formed in the deblocking process. By the appropriate choice of base, one can act selectively at either site of a molecule which incorporates both beta-elimination and Michael acceptor sites as protective units (Bsmoc vs Fm and Fmoc vs Bsm).
    DOI:
    10.1021/jo982140l
  • 作为产物:
    描述:
    benzothiophen-2-yllithiumsodium perborate 、 sodium tetrahydroborate 作用下, 以 四氢呋喃二氯甲烷溶剂黄146 为溶剂, 反应 20.0h, 生成 1,1-二杂苯[B]硫代苯甲基N-琥珀酸胺碳酸盐
    参考文献:
    名称:
    The 1,1-Dioxobenzo[b]thiophene-2-ylmethyloxycarbonyl (Bsmoc) Amino-Protecting Group
    摘要:
    Full details are presented for use of the Bsmoc amino-protecting group for both solid phase and rapid continuous solution syntheses. Application to the latter methodology represents a significant improvement over the corresponding Fmoc-based method for rapid solution synthesis due to the opportunity to use water or saturated sodium-chloride solution rather than an acidic phosphate buffer to remove all byproducts, with consequent cleaner phase separation and higher yields of the growing peptide. Comparison of the Bsmoc and Bspoc functions showed that the former, because of steric hindrance, does not suffer from the competitive or premature deblocking observed with the Bspoc system. Because of its incorporation of a styrene chromophore, resin loading of Bsmoc amino acids could be followed as has previously been shown for the Fmoc analogues. Applications of Bsmoc chemistry to peptide sequences incorporating the base sensitive Asp-Gly unit gave less contamination due to aminosuccinimide formation than comparable syntheses involving standard Fmoc chemistry because a weaker or less concentrated base could be used in the deblocking step. Experimental details are presented for building up peptides in solution via the continuous methodology. Deblockings involved the use of insoluble piperazino silica as well as the polyamine TAEA which simplified aqueous separation of the growing, but nonisolated peptide product, from excess acylating agent and other side products formed in the deblocking process. By the appropriate choice of base, one can act selectively at either site of a molecule which incorporates both beta-elimination and Michael acceptor sites as protective units (Bsmoc vs Fm and Fmoc vs Bsm).
    DOI:
    10.1021/jo982140l
点击查看最新优质反应信息

文献信息

  • Therapeutic Monosaccharide-Based Inhibitors of Hexokinase and Glucokinase for Parasitic Diseases, Along with Methods of their Formation and Use
    申请人:University of South Carolina
    公开号:US20160145291A1
    公开(公告)日:2016-05-26
    Methods for treating a mammal that is infected by a parasitic organism are provided, along with pharmaceutical compositions and compounds. The method includes administering to the mammal the pharmaceutical composition of FIG. 1, where: R 1 , R 2 , R 3 , and R 4 comprises, independently, H, OH, NH 2 , SH, a halogen, or an organic group or a derivative thereof; X 1 is O, NH, CH 2 , or S; m is 0 or 1; X 2 comprises an organic linkage, such as CH 2 ; n is an integer from 0 to 10; and R 5 comprises an aromatic organic group.
    提供了一种治疗被寄生生物感染的人畜的方法,以及药物组合物和化合物。该方法包括向人畜投给FIG.1的药物组合物,其中:R1、R2、R3和R4独立地包括H、OH、NH2、SH、卤素或有机组分的衍生物;X1为O、NH、CH2或S;m为0或1;X2包括如CH2的有机键;n为0到10的整数;R5包括芳香族有机组分。
  • Protecting‐Group‐Controlled Enzymatic Glycosylation of Oligo‐ <i>N</i> ‐Acetyllactosamine Derivatives
    作者:Ivan A. Gagarinov、Tiehai Li、Na Wei、Javier Sastre Toraño、Robert P. de Vries、Margreet A. Wolfert、Geert‐Jan Boons
    DOI:10.1002/anie.201903140
    日期:2019.7.29
    easily be converted into 6 different hexasaccharides in which the glucosamine moieties are either acetylated (GlcNAc) or modified as a free amine (GlcNH2) or Boc (GlcNHBoc). Fucosylation of the resulting compounds by a recombinant fucosyl transferase resulted in only modification of the natural GlcNAc moieties, providing access to 6 selectively mono‐ and bis‐fucosylated oligosaccharides. Conversion of
    我们描述了一种化学酶策略,该策略可以从一个化学合成的三N-乙酰乙酰乳糖胺衍生物开始提供差异岩藻糖基化和唾液酸化寡糖库。常见的前体可以轻松地转化为6种不同的六糖,其中的葡糖胺部分被乙酰化(GlcNAc)或修饰为游离胺(GlcNH 2)或Boc(GlcNHBoc)。通过重组岩藻糖基转移酶对所得化合物进行岩藻糖基化仅导致天然GlcNAc部分的修饰,从而提供了6种选择性单岩藻糖基化和双岩藻糖基化的寡糖的途径。GlcNH 2的转化或将GlcNHBoc部分插入天然GlcNAc中,然后通过唾液酸转移酶进行唾液酸化,得到12种不同的岩藻糖基化和唾液酸化化合物。寡糖以微阵列形式印刷,并由几种聚糖结合蛋白探测,表明岩藻糖基化的复杂模式可以调节聚糖识别。
  • The 1,1-Dioxobenzo[<i>b</i>]thiophene-2-ylmethyloxycarbonyl (Bsmoc) Amino-Protecting Group
    作者:Louis A. Carpino、Mohamed Ismail、George A. Truran、E. M. E. Mansour、Shin Iguchi、Dumitru Ionescu、Ayman El-Faham、Christoph Riemer、Ralf Warrass
    DOI:10.1021/jo982140l
    日期:1999.6.1
    Full details are presented for use of the Bsmoc amino-protecting group for both solid phase and rapid continuous solution syntheses. Application to the latter methodology represents a significant improvement over the corresponding Fmoc-based method for rapid solution synthesis due to the opportunity to use water or saturated sodium-chloride solution rather than an acidic phosphate buffer to remove all byproducts, with consequent cleaner phase separation and higher yields of the growing peptide. Comparison of the Bsmoc and Bspoc functions showed that the former, because of steric hindrance, does not suffer from the competitive or premature deblocking observed with the Bspoc system. Because of its incorporation of a styrene chromophore, resin loading of Bsmoc amino acids could be followed as has previously been shown for the Fmoc analogues. Applications of Bsmoc chemistry to peptide sequences incorporating the base sensitive Asp-Gly unit gave less contamination due to aminosuccinimide formation than comparable syntheses involving standard Fmoc chemistry because a weaker or less concentrated base could be used in the deblocking step. Experimental details are presented for building up peptides in solution via the continuous methodology. Deblockings involved the use of insoluble piperazino silica as well as the polyamine TAEA which simplified aqueous separation of the growing, but nonisolated peptide product, from excess acylating agent and other side products formed in the deblocking process. By the appropriate choice of base, one can act selectively at either site of a molecule which incorporates both beta-elimination and Michael acceptor sites as protective units (Bsmoc vs Fm and Fmoc vs Bsm).
查看更多

同类化合物

2,9-二(2-苯乙基)蒽并[2,1,9-DEF:6,5,10-D’E’F’]二异喹啉-1,3,8,10(2H,9H)-四酮 (βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-(+)-5,5'',6,6'',7,7'',8,8''-八氢-3,3''-二叔丁基-1,1''-二-2-萘酚,双钾盐 (S)-盐酸沙丁胺醇 (S)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2-N-Fmoc-氨基甲基吡咯烷盐酸盐 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-3,3''-双([[1,1''-联苯]-4-基)-[1,1''-联萘]-2,2''-二醇 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,5R)-3,3a,8,8a-四氢茚并[1,2-d]-1,2,3-氧杂噻唑-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aS,8aR)-2-(吡啶-2-基)-8,8a-二氢-3aH-茚并[1,2-d]恶唑 (3aS,3''aS,8aR,8''aR)-2,2''-环戊二烯双[3a,8a-二氢-8H-茚并[1,2-d]恶唑] (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3S,3aR)-2-(3-氯-4-氰基苯基)-3-环戊基-3,3a,4,5-四氢-2H-苯并[g]吲唑-7-羧酸 (3R,3’’R,4S,4’’S,11bS,11’’bS)-(+)-4,4’’-二叔丁基-4,4’’,5,5’’-四氢-3,3’’-联-3H-二萘酚[2,1-c:1’’,2’’-e]膦(S)-BINAPINE (3-三苯基甲氨基甲基)吡啶 (3-[(E)-1-氰基-2-乙氧基-2-hydroxyethenyl]-1-氧代-1H-茚-2-甲酰胺) (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,4S)-Fmoc-4-三氟甲基吡咯烷-2-羧酸 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,3R)-3-(叔丁基)-2-(二叔丁基膦基)-4-甲氧基-2,3-二氢苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2R,2''R,3R,3''R)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2-硝基苯基)磷酸三酰胺 (2-氯-6-羟基苯基)硼酸 (2-氟-3-异丙氧基苯基)三氟硼酸钾 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1α,1'R,4β)-4-甲氧基-5''-甲基-6'-[5-(1-丙炔基-1)-3-吡啶基]双螺[环己烷-1,2'-[2H]indene (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1R,1′R,2S,2′S)-2,2′-二叔丁基-2,3,2′,3′-四氢-1H,1′H-(1,1′)二异磷哚