绿原酸亦称“绿吉酸”、“咖啡单宁酸”。分子式为C₁₆H₁₈O₉,分子量354.32。在水中可得针状结晶,110℃时变为无水合物,熔点208℃,[α]D₂⁵-33.5°(水,C=1),K=2.2×10⁻³(27℃)。绿原酸具有弱酸味和收敛性,在25℃时溶于水中4%,热水中易溶,乙醇、丙酮可溶解,微溶于乙酸乙酯,不溶于氯仿、乙醚及二硫化碳。与浓盐酸共沸得蓝色染料,能使溴水褪色,并在与浓碘化氢共沸时产生苯甲酸,在230℃下与水共热分解为苯酚,在稀盐酸中则分解为咖啡酸和金鸡纳酸等。室温下与稀碱作用得到咖啡酸和金鸡纳酸。
绿原酸是植物代谢的重要成分,存在于多种双子叶植物的果实、叶子及其他组织中。它是一种3-咖啡酸喹宁酸,新绿原酸则为5-咖啡酸喹宁酸;而异绿原酸含三种咖啡酰喹宁酸类物质:4,5-二咖啡酰喹宁酸、3,4-二咖啡酰喹宁酸和3,5-二咖啡酰喹宁酸。
应用绿原酸广泛存在于多种植物药中,如茵陈具有利胆作用,苎麻则有止血和升白细胞效果。扁蓄草、杜仲叶、水龙骨、千屈菜、蓬子菜、玉米叶、卷心菜、咖啡和茶叶等含有绿原酸。金银花含有多种类的绿原酸类化合物,包括绿原酸、异绿原酸、新绿原酸和咖啡酸,其中绿原酸含量最高。研究表明,金银花中的绿原酸和咖啡酸具有显著止血作用,能缩短凝血时间和出血时间。苎麻根中也含有有效的止血成分——绿原酸。然而,绿原酸不耐高温,长时间加热会破坏其药效。
生物活性Neochlorogenic acid 是一种天然多酚化合物,在干果及其他植物中发现。该化合物能抑制 TNF-α 和 IL-1β 的产生,并且通过减少 iNOS 和 COX-2 蛋白的表达来降低 LPS 刺激的 NO 生成,同时还能抑制磷酸化的 NF-κB p65 和 p38 MAPK 活化。
体外研究Neochlorogenic acid (NCA) 在 BV2 小胶质细胞中能减少脂多糖 (LPS)-诱导的 NO 产生,通过抑制 iNOS 和 COX-2 蛋白表达和炎症细胞因子(如 TNF-α 和 IL-1β)来实现。同时,在激活的小胶质细胞中也抑制了磷酸化的 p38 MAPK 和 NF-κB p65 活化。LPS 刺激的 BV2 细胞中的 iNOS 和 COX-2 水平在用 50 μM 和 100 μM Neochlorogenic acid 处理后显著降低。
化学性质Neochlorogenic acid 易溶于热水、乙醇及丙酮,可完全溶解。极微溶于醋酸乙酯。来源于金银花。
用途用于含量测定、鉴定以及药理实验等。具有较广泛的抗菌作用,但在体内能被蛋白质灭活。
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
(-)-5-咖啡酰奎宁酸 | 3-caffeoylquinic acid | 202650-88-2 | C16H18O9 | 354.314 |
—— | 3-O-(cis-caffeoyl)quinic acid | 32719-11-2 | C16H18O9 | 354.314 |
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
—— | 3-O-(cis-caffeoyl)quinic acid | 32719-11-2 | C16H18O9 | 354.314 |
(-)-5-咖啡酰奎宁酸 | 3-caffeoylquinic acid | 202650-88-2 | C16H18O9 | 354.314 |
—— | neochlorogenic acid methyl ester | —— | C17H20O9 | 368.34 |
异绿原酸 C | 4,5-di-O-caffeoylquinic acid | 57378-72-0 | C25H24O12 | 516.458 |
—— | 4-caffeoylquinic acid | 905-99-7 | C16H18O9 | 354.314 |
—— | 5-O-dihydrocaffeoylquinic acid | 13398-63-5 | C16H20O9 | 356.329 |
—— | hexatrimethylsilyl-trans-3-O-caffeoyl-D-quinic acid | —— | C34H66O9Si6 | 787.406 |
—— | (1S,3R,4R,5R)-5-[3-(3,4-dihydroxyphenyl)-3-hydroxypropanoyl]-1,4,5-trihydroxycyclohexanecarboxylic acid | 1258222-09-1 | C16H20O10 | 372.329 |
Tea brewed from chrysanthemum flowers has been widely used in Chinese medicine. The possibly medicinal compounds in Chrysanthemum morifolium tea can be purified by preparative high performance liquid chromatography (HPLC), but this is usually done with acidic conditions, which leads to the hydrolysis of glycosides. In hopes of avoiding this hydrolysis, we explored the effect of weakly basic conditions on the separation and purification of flavonoids and glycosides from Chrysanthemum morifolium. We also explored the effects of weakly basic conditions on chlorogenic acid (3-CQA) and apigenin-7-O-glucoside (A7G). Our results show that the concentration of the weakly basic ammonium hydrogen carbonate and time had no significant effect on A7G, p < 0.01, but it had a significant effect on 3-CQA, p < 0.01. HPLC and ultraviolet (UV) analysis showed that the structure of 3-CQA is destroyed in weakly basic conditions. Caffeic acid, quinic acid, and 3,4-dihydroxymandelic acid, which is a hydrolysate of 3-CQA, were identified by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The results showed that weakly basic conditions could be used for the purification of flavonoids and glycosides but not for caffeoylquinic acids. Moreover, our work clarified the hydrolysis behaviour of caffeoylquinic acids, which can be helpful for research into their functional aspects.