The cdc25A protein phosphatase inhibitor dysidiolide (1) has been synthesized enantioselectively, starting from the enantiomerically pure ketal enone 2 and using a cationic rearrangement as the key step to produce the fully substituted bicyclic core of the natural product. Once the central portion of 1 was established, elaboration of the side chains was accomplished expediently via steps that included (1) vinyl cuprate displacement of an iodide to complete the C-l side chain, (2) a highly diastereoselective oxazaborolidine-catalyzed (CBS) reduction to form carbinol 11, and (3) photochemical oxidation of 11 to generate the gamma-hydroxybutenolide functionality of 1. Additionally, this synthesis proves the absolute stereochemistry of dysidiolide (1).
The cdc25A protein phosphatase inhibitor dysidiolide (1) has been synthesized enantioselectively, starting from the enantiomerically pure ketal enone 2 and using a cationic rearrangement as the key step to produce the fully substituted bicyclic core of the natural product. Once the central portion of 1 was established, elaboration of the side chains was accomplished expediently via steps that included (1) vinyl cuprate displacement of an iodide to complete the C-l side chain, (2) a highly diastereoselective oxazaborolidine-catalyzed (CBS) reduction to form carbinol 11, and (3) photochemical oxidation of 11 to generate the gamma-hydroxybutenolide functionality of 1. Additionally, this synthesis proves the absolute stereochemistry of dysidiolide (1).
The cdc25A protein phosphatase inhibitor dysidiolide (1) has been synthesized enantioselectively, starting from the enantiomerically pure ketal enone 2 and using a cationic rearrangement as the key step to produce the fully substituted bicyclic core of the natural product. Once the central portion of 1 was established, elaboration of the side chains was accomplished expediently via steps that included (1) vinyl cuprate displacement of an iodide to complete the C-l side chain, (2) a highly diastereoselective oxazaborolidine-catalyzed (CBS) reduction to form carbinol 11, and (3) photochemical oxidation of 11 to generate the gamma-hydroxybutenolide functionality of 1. Additionally, this synthesis proves the absolute stereochemistry of dysidiolide (1).