摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,1-二氯乙烯 | 75-35-4

中文名称
1,1-二氯乙烯
中文别名
1,1-二氯乙烯;二氯烯烃;过氯乙烯;偏氯乙烯;偏二氯乙烯;氯化亚乙烯
英文名称
1,1-Dichloroethylene
英文别名
1,1-dichloroethane;vinylidene chloride;1,1-dichloroethene;VDC
1,1-二氯乙烯化学式
CAS
75-35-4
化学式
C2H2Cl2
mdl
MFCD00011653
分子量
96.9439
InChiKey
LGXVIGDEPROXKC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    -122 °C (lit.)
  • 沸点:
    30-32 °C (lit.)
  • 密度:
    1.213 g/mL at 20 °C (lit.)
  • 蒸气密度:
    3.46 (vs air)
  • 闪点:
    −9 °F
  • 溶解度:
    2.5g/l
  • 介电常数:
    4.7(16℃)
  • 暴露限值:
    TLV-TWA 5 ppm (~20 mg/m3) (ACGIH); TLV-STEL 20 ppm (ACGIH); carcinogenic ity: Animal Limited Evidence, Human Inad equate Evidence (IARC).
  • 物理描述:
    Vinylidene chloride, stabilized appears as a clear colorless liquid with a chloroform-like odor. Flash point 0°F. Boiling point 99°F. Denser (at 10.1 lb / gal) than water and insoluble in water. Hence sinks in water. May polymerize exothermically if heated or contaminated. If the polymerization takes place inside a container, the container may rupture violently. Vapors heavier than air.
  • 颜色/状态:
    Colorless liquid
  • 气味:
    Mild, sweet odor resembling that of chloroform
  • 蒸汽密度:
    3.25 (NTP, 1992) (Relative to Air)
  • 蒸汽压力:
    600 mm Hg at 25 °C
  • 亨利常数:
    0.03 atm-m3/mole
  • 大气OH速率常数:
    1.09e-11 cm3/molecule*sec
  • 稳定性/保质期:
    1. 易挥发且有毒,有自行聚合的倾向,并易被空气化。在化过程中会生成气、氯化氢光气甲醛及过化物,这些过化物又会促使单体进一步聚合。它还能与各种乙烯生物(如氯乙烯苯乙烯等)共聚。因此需要加入阻聚剂或用二氧化碳、碱的溶液密封。或黄在某些条件下可能生成易爆炸的乙炔化合物。 2. 在光或催化剂的作用下极易发生聚合反应,可与氯乙烯丙烯腈等物质共聚。在空气中容易自化生成过化物,具有潜在的爆炸危险。这种过化物会缓慢分解成甲醛光气氯化氢。通常需要加入少量对苯二酚酚类及烷基胺作稳定剂。40~50℃时与反应可生成1,1,2,2-四氯乙烷;在无三氯化铝的存在下,会与氯化氢反应生成1,1,1-三氯乙烷。 3. 皮肤和眼睛受到刺激。吸入高浓度蒸气会导致中枢神经系统麻痹、昏迷。长期低浓度吸入可能导致肝脏和肾脏损害,并可能对动物和人体产生致癌作用。因此使用时需注意通风。小鼠的致死浓度为25209.5 mg/m³,嗅觉阈浓度为1985 mg/m³。工作场所容许的最大蒸汽浓度应控制在40 mg/m³以下(以美国的标准为准)。 ### 稳定性 稳定 ### 禁配物 强化剂、酸类和碱类 ### 避免接触的条件 受热 ### 聚合危害 聚合 ### 分解产物 氯化氢
  • 自燃温度:
    1058 °F (570 °C)
  • 分解:
    Hazardous decomposition products formed under fire conditions - Carbon oxides, hydrogen chloride gas.
  • 粘度:
    0.3302 cP at 20 °C
  • 腐蚀性:
    Vinylidene chloride may be corrosive or unstable in the presence of steel.
  • 燃烧热:
    1095.9 kJ/mole at 25 °C
  • 汽化热:
    26.48 kJ/mole at 25 °C
  • 表面张力:
    24 dynes/cm at 15 °C (Inhibited)
  • 电离电位:
    10.00 eV
  • 聚合:
    When stored between -40 and +25 °C in the absence of inhibitor and in presence of air, vinylidene chloride rapidly absorbs oxygen with formation of a violently explosive peroxide. The latter initiates polymerization, producing an insoluble polymer which adsorbs the peroxide. Separation of this polymer in a dry state must be avoided, since if more than 15% of peroxide is present, the polymer may be detonable by slight shock or heat.
  • 气味阈值:
    Odor threshold (air) = 2000-5500 mg/cu m
  • 折光率:
    Index of refraction: 1.4249 at 20 °C/D
  • 相对蒸发率:
    ... The evaporation half-life of a dilute aqueous solution of vinylidene chloride (1 ppm w/w) in an open container stirred at 200 rpm at 25 °C /was/ 22 min, 90% of the compound was lost in 89 min.
  • 保留指数:
    513;513;517;517;519;517.2;498;508.9;498;513;513.1;509.4;512;511;512;511;515;519;520;515

计算性质

  • 辛醇/水分配系数(LogP):
    2.3
  • 重原子数:
    4
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

代谢
近年来,多种化合物的生物转化机制已被阐明,这通常为肾毒性提供了基础。……氯乙烯(VDC)在小鼠吸入后具有肾毒性,但口服或腹腔注射后则没有。VDC的肾毒性是由于雄性小鼠近端小管中雄激素依赖性细胞色素P450的选择性表达所致。这种酶将VDC化成亲电子物质,在雌性小鼠中不存在,但可以通过雄激素治疗诱导。仅在吸入后观察到VDC的肾毒性,这是由于肾脏的高血流量,因此在吸入后高浓度的VDC被输送到肾脏。口服或腹腔注射后,肝脏的首过代谢有效地减少了输送到肾脏的VDC量……
In recent years, the mechanisms of biotransformation, which often provide the basis for renal toxicity, have been elucidated for a variety of compounds. ... Vinylidene chloride (VDC) is nephrotoxic in mice after inhalation, but not after oral or intraperitoneal administration. The nephrotoxicity of VDC is due to the selective expression of an androgen-dependent cytochrome P450 in the proximal tubules of male mice. This enzyme oxidizes VDC to an electrophile and is not present in female mice, but can be induced be androgen treatment. The observation of nephrotoxicity of VDC after inhalation only is due to the high blood flow to the kidney and thus high concentrations of VDC delivered to the kidney after inhalation. After oral or intraperitoneal application, hepatic first-pass metabolism efficiently reduces the amount of VDC delivered to the kidney...
来源:Hazardous Substances Data Bank (HSDB)
代谢
...的代谢途径是通过实验动物实验确定的。尚不清楚1,1-DCE在人体内的代谢是否相同,尽管来自人类肝脏和肺部的体外微粒体制剂形成相同的初始产物...。CYP2E1对1,1-DCE的化应产生三种代谢物:DCE环2-氯乙酰氯2,2-二氯乙醛。所有这些代谢物都会与谷胱甘肽(GSH)和/或反应。在肾脏中,S-(2,2-二-1-羟基)乙基谷胱甘肽的进一步代谢可能形成另一种有毒化合物,二代甲。形成的GSH结合物在肾脏中被分解成各种尿液排泄产物。人们认为环氯乙醛可能在很大程度上与组织反应性和在GSH显著耗竭后组织中的毒性效应有关。在大鼠肝脏微粒体培养中形成的1,1-DCE的主要代谢物是DCE环2,2-二氯乙醛2-氯乙酰氯...。这些代谢物也从小鼠微粒体培养中鉴定出来...。所有这些亲电性代谢物都会发生二次反应,包括化,与GSH结合和 hydrolysis。形成的主要产物是GSH结合物,2-(S-谷胱甘肽基)乙酰谷胱甘肽和2-S-谷胱甘肽乙酸盐,据信这些产物来自DCE环。在大鼠肝脏微粒体培养中未观察到S-(2,2-二-1-羟基乙基谷胱甘肽,即GSH与2,2-二氯乙醛反应形成的GSH结合物...。乙缩醛,以及氯乙酸和S-(2-乙酰基)-谷胱甘肽(分别为2-氯乙酰氯解和GSH结合产物)的平远低于DCE环衍生的结合物。
The proposed metabolic pathways for 1,1-DCE ... were determined from experimental studies in laboratory animals. It is not known whether the metabolism of 1,1-DCE is the same in humans, although in vitro microsomal preparations from human liver and lung form the same initial products ... . Oxidation of 1,1-DCE by CYP2E1 should produce three metabolites: DCE epoxide, 2-chloroacetyl chloride, and 2,2-dichloroacetaldehyde. All of these metabolites react with glutathione (GSH) and/or water. In the kidney, further metabolism of S-(2,2-dichloro-1- hydroxy)ethylglutathione could form another toxic compound, dicholorothioketene. The GSH conjugates formed are catabolized in the kidney to a variety of urinary excretion products. The epoxide, and perhaps to a lesser extent the chloroacetaldehyde, are believed to be associated with the tissue reactivity and toxic effects in tissues that ensue after significant depletion of GSH. The primary metabolites of 1,1-DCE formed in rat hepatic microsomal incubations are DCE epoxide, 2,2-dichloroacetaldehyde, and 2-chloroacetyl chloride ... . These metabolites were also identified from mouse microsomal incubations ... . All these electrophilic metabolites undergo secondary reactions, including oxidation, conjugation with GSH, and hydrolysis. The major products formed are GSH conjugates, 2-(S-glutathionyl)acetyl glutathione, and 2-S-glutathionyl acetate, which are believed to be derived from the DCE epoxide. S-(2,2-Dichloro-1-hydroxy ethyl glutathione, the GSH conjugate formed from reaction of GSH with 2,2- dichloroacetaldehyde, was not observed in rat liver microsomal incubations containing GSH ... . The acetal, together with chloroacetic acid and S-(2-chloroacetyl)- glutathione - the hydrolysis and GSH-conjugated products of 2-chloroacetyl chloride, respectively - was detected at levels much lower than those for the DCE epoxide-derived conjugates.
来源:Hazardous Substances Data Bank (HSDB)
代谢
在人肝脏和肺微粒体培养中,检测到的DCE环衍生的GSH结合物是主要的代谢物。2,2-二氯乙醛以低平被检测到。根据微粒体蛋白的毫克数,五个人类样本中的三个肝脏微粒体将1,1-DCE代谢为环衍生的GSH结合物的平是小鼠肝脏微粒体的2.5到3倍。这些GSH结合物也是八个人类样本的肺微粒体中形成的主要产物;仅形成了低平的2,2-二氯乙醛。人类肺微粒体中形成的平均平大约是从小鼠肺微粒体中形成的量的50%。在动物和人体组织中,细胞色素P450 CYP2E1催化DCE环的形成。
In human liver and lung microsomal incubations, the DCE epoxide-derived GSH conjugates ...were the major metabolites detected ... . 2,2-Dichloroacetaldehyde was detected at low levels. Liver microsomes from three out of five human samples metabolized 1,1-DCE to the epoxide-derived GSH conjugates at levels that were 2.5- to 3-fold higher than in mouse liver microsomes, based on milligrams of microsomal protein. These GSH conjugates were also the major products formed in lung microsomes from eight human samples; only low levels of 2,2-dichloroacetaldehyde were formed. The mean level in lung microsomes from humans was about 50% of the amount formed in lung microsomes from mice. In both animal and human tissues, cytochrome P450 CYP2E1 catalyzes the formation of the DCE epoxide.
来源:Hazardous Substances Data Bank (HSDB)
代谢
1,1-二氯乙烯(DCE)在肺和肝脏微粒体培养中形成的主要代谢物被鉴定为DCE-环氧化物2,2-二氯乙醛2-氯乙酰氯。所有这些都是具有亲电性的代谢物,可以形成包括与谷胱甘肽(GSH)共轭在内的次级反应。结果表明,DCE-环氧化物是与GSH形成共轭的主要代谢物,这一反应可能是体内GSH耗竭的原因。这些发现支持了这样一个前提,即细胞内GSH耗竭后,DCE的代谢物,包括DCE-环氧化物,会与细胞蛋白结合,这一过程会导致细胞损伤,并表明与醇亲核试剂的共轭代表了一种解毒机制。
The primary metabolites of 1,1-dichloroethylene (DCE) formed in lung and liver microsomal incubations have been identified as DCE-epoxide, 2,2-dichloroacetaldehyde and 2-chloroacetyl chloride. All are electrophilic metabolites that form secondary reactions including conjugation with GSH. Results ... indicated that the DCE-epoxide is the major metabolite forming conjugates with GSH, and this reaction is likely responsible for the depletion of GSH observed in vivo. /These/ findings support the premise that, following depletion of intracellular GSH, metabolites of DCE including the DCE-epoxide bind to cellular proteins, a process which leads to cell damage and suggests that conjugation with the thiol nucleophile represents a-detoxification mechanism.
来源:Hazardous Substances Data Bank (HSDB)
代谢
1,1-二氯乙烯通过口服、吸入和皮肤途径被吸收。它迅速在体内分布,主要进入肝脏和肾脏。肝脏微囊泡细胞色素P-450酶将1,1-二氯乙烯代谢为其有毒代谢物,包括环化合物、酰和卤代醛。主要代谢物被认为是2,2-二氯乙醛2-氯乙酰氯。这些代谢物随后通过羟基化和与谷胱甘肽结合而被解毒。1,1-二氯乙烯代谢物主要通过尿液和呼出气体排出体外。(L185)
1,1-Dichloroethene is absorbed via oral, inhalation, and dermal routes. It is rapidly distributed in the body, mainly to the liver and kidneys. Hepatic microsomal cytochrome P-450 enzymes metabolize 1,1-dichloroethene into its toxic metabolites, which include epoxides, acyl chlorides, and halogenated aldehydes. The main metabolites are believed to be 2,2-dichloroacetaldehyde and 2-chloroacetyl chloride. These are later detoxified by hydroxylation and conjugation with glutathione. Excretion of 1,1-dichloroethene metabolites occurs primarily in the urine and exhaled air. (L185)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
识别与使用:1,1-二氯乙烯(1,1-DCE)是一种无色液体。它被用作生产烃(HCFC-141b和HCFC-142b)的专属中间体,用于生产氯乙酰氯,以及生产均聚物、共聚物和三元聚合物(乳胶和树脂)。这些聚合物被用于各种消费品中,包括食品包装、纺织品和户外家具。 人体研究:过度暴露的潜在症状包括眼睛、皮肤、喉咙刺激,头晕,头痛,恶心,呼吸困难,肝脏和肾脏功能障碍,肺炎。空气中高浓度1,1-DCE的急性暴露会导致中枢神经系统抑制。反复接触低浓度与肝脏和肾脏功能障碍有关。与眼睛接触会引起结膜炎和暂时性角膜损伤。皮肤接触1,1-DCE会引起刺激,这可能部分是由于抑制剂甲基氢醌醚的存在。在美国对138名接触1,1-DCE的工人进行的一项流行病学研究中,没有发现癌症的过量,但随访不完整,近40%的工人的首次接触时间少于15年。在联邦德国对629名接触1,1-DCE的工人的研究中,报告了7例癌症死亡(5例支气管癌)。这个数字没有超过预期值。在工人中发现了两例支气管癌,两人都是37岁,而预期35至39岁的人中有0.07例。三项报告表明,接触二氯乙烯与出生缺陷有关。然而,所有这些情况都涉及接触多种污染物,因此无法建立报告的出生缺陷与接触1,1-DCE之间的因果关系。在人类重复接触1,1-DCE后观察到肝脏毒性,推测是通过吸入途径。 动物研究:一项研究显示没有证据表明1,1-DCE会导致皮肤致敏。通过口服或吸入途径高剂量暴露后,实验动物的目标器官是肝脏、肾脏和肺部的克拉拉细胞。在低剂量、长期暴露下,肝脏是大鼠口服或吸入暴露的主要目标器官,但肾脏是小鼠吸入暴露的主要目标器官。通过口服途径暴露的癌症生物测试已在大鼠、小鼠和鲑鱼中进行。尽管这些生物测试存在协议限制,但没有任何显著证据表明1,1-DCE通过口服途径暴露是致癌物。通过吸入途径暴露的癌症生物测试已在大鼠、小鼠和仓鼠中进行。一项雄性小鼠的生物测试在一个暴露平上显示出肾脏腺癌发生率增加。有证据表明,诱导肾脏腺癌是一种与雄性小鼠肾脏中CYP2E1表达相关的性别和物种特异性反应。1,1-DCE在微生物存在代谢激活的情况下导致基因突变。大多数哺乳动物细胞体外或体内测试没有显示出遗传毒性。在导致母鼠肝脏最小毒性的口服暴露下,没有观察到生殖或发育毒性。在妊娠大鼠饮用中分别含有0.15 ppm或110 ppm 1,1-DCE的情况下,记录了幼崽总心脏畸形的发病率增加12-13%,这种情况持续了两个月,随后是整个妊娠期(对照组类似心脏异常的发病率为3%)。在使用通过植入渗透泵直接将化学品连续输送到妊娠大鼠子宫的方法时,也报告了心脏畸胎的发生率增加。1,1-DCE在鸡胚胎中是心脏畸胎原,心脏异常包括房间隔和室间隔缺损,所有瓣膜畸形,以及大血管异常。有证据表明,在母体毒性缺失的情况下,吸入暴露后会出现胎儿毒性(骨骼化延迟)。1,1-DCE的毒性与其通过细胞色素P450催化的代谢途径转化为与细胞大分子共价结合的反应中间体有关。结合程度与GSH的损失成反比,因此组织损伤的严重程度与GSH的下降平行。因此,在低剂量下,GSH消耗很少时对1,1-DCE的反应预期会与导致大量GSH消耗的高剂量下的反应非常不同。 生态毒性研究:对虹鳟鱼(Oncorhynchus mykiss)(8周大)进行了为期18个月的1,1-DCE致癌性研究,剂量为每天4 mg/kg体重。1,1-DCE被掺入饲料中。检查肿瘤的组织包括肝脏、肾脏、脾脏、鳃、性腺、胸腺、甲状腺、心脏、胃、幽门盲囊、十二指肠、直肠、胰腺和气囊。在使用的暴露平下,1,1-DCE没有产生肿瘤,也没有增加肝脏重量。没有证据表明有任何其他慢性毒性效应。
IDENTIFICATION AND USE: 1,1-Dichloroethene (1,1-DCE) is a colorless liquid. It is used as a captive intermediate in the production of hydrochlorofluorocarbons (HCFC-141b and HCFC-142b), in the production of chloroacetyl chloride, and in the production of homo-, co-, and terpolymers (latex and resin). The polymers are used in a variety of consumer products, including food packaging, textiles, and outdoor furniture. HUMAN STUDIES: Potential symptoms of overexposure are irritation of eyes, skin, throat, dizziness, headache, nausea, dyspnea, liver and kidney dysfunction, pneumonitis. Acute exposure to high concentrations of 1,1-DCE in air results in CNS depression. Repeated exposures to low concentrations are associated with liver and renal dysfunction. Contact with the eye causes conjunctivitis and transient corneal injury. Skin contact with 1,1-DCE causes irritation, which may be due partly to the presence of an inhibitor, hydroquinone monomethyl ether. In one epidemiological study of 138 workers exposed to 1,1-DCE in the United States, no excess of cancer was found, but follow-up was incomplete, and nearly 40% of the workers had less than 15 years' latency since first exposure. In a study in the Federal Republic of Germany of 629 workers exposed to 1,1-DCE, seven deaths from cancer (five bronchial carcinomas) were reported. This number was not in excess of the expected value. Two cases of bronchial carcinoma were found in workers, both of whom were 37 years old, whereas 0.07 were expected for persons aged 35 to 39 years. Three reports suggest an association between exposure to dichloroethylenes and birth defects. However, all of these situations involved exposure to multiple contaminants, so a cause-and-effect relationship between the reported birth defects and exposure to 1,1-DCE cannot be established. Hepatotoxicity has been observed in humans after repeated exposure to 1,1-DCE, presumably by the inhalation route. ANIMAL STUDIES: One study shows no evidence that 1,1-DCE causes skin sensitization. Following high-dose exposure by the oral or inhalation route, the target organs in experimental animals are the liver, the kidney, and the Clara cells of the lung. Following low-dose, long-term exposure, the liver is the major target organ in rats following oral or inhalation exposure, but the kidney is the major target organ in mice following inhalation exposure. Bioassays for cancer by the oral route of exposure have been conducted in rats, mice, and trout. Although these bioassays have protocol limitations, none provides any significant evidence that 1,1-DCE is a carcinogen by the oral route of exposure. Bioassays for cancer by the inhalation route of exposure have been conducted in rats, mice, and hamsters. One bioassay in male mice showed an increase in the incidence of kidney adenocarcinomas at one exposure level. There is evidence that the induction of kidney adenocarcinomas is a sex- and species-specific response related to the expression of CYP2E1 in the kidney of male mice. 1,1-DCE causes gene mutations in microorganisms in the presence of metabolic activation. Most tests with mammalian cells in vitro or in vivo show no evidence of genotoxicity. No reproductive or developmental toxicity was observed at an oral exposure that caused minimal toxicity in the liver of the dams. An increased incidence of total cardiac malformations of 12-13% was recorded in pups from rats imbibing water containing either 0.15 ppm or 110 ppm 1,1-DCE over a period of 2 months prior to and subsequently the whole pregnancy period (controls had a 3% incidence of similar cardiac anomalie). An increased incidence of cardiac terata was also reported when utilizing method of continuous infusion of the chemical directly into the gravid rat uterus via implanted osmotic pumps. 1,1-DCE was a cardiac teratogen in the chick embryo, cardiac anomalies included atrial and ventricular septal defects, malformations of all valves, and great vessel abnormalities. There is evidence of fetal toxicity (delayed ossification) following inhalation exposure in the absence of maternal toxicity. The toxicity of 1,1-DCE is associated with cytochrome P450-catalyzed metabolism of 1,1-DCE to reactive intermediates that bind covalently to cellular macromolecules. The extent of binding is inversely related to loss of GSH, so that severity of tissue damage parallel the decline in GSH. Thus, the responses to 1,1-DCE at low doses with little depletion of GSH are expected to be very different from the responses at high doses causing substantial GSH depletion. ECOTOXICITY STUDIES: An 18-month carcinogenicity study of 1,1-DCE in rainbow trout (Oncorhynchus mykiss) (8 weeks old) at 4 mg/kg body weight per day was conducted. 1,1-DCE was incorporated in the feed. Tissues examined for neoplasms included liver, kidney, spleen, gill, gonads, thymus, thyroid, heart, stomach, pyloric caeca, duodenum, rectum, pancreas, and swimbladder. 1,1-DCE produced no neoplasms at the exposure levels used and no increase in liver weight. There was no evidence of any other chronic toxic effects.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
1,1-二氯乙烯的毒性是由其反应性代谢物引起的,这些代谢物包括通过细胞色素P-450 2E1化产生的环化合物、酰和卤代醛。这些代谢物,尤其是2,2-二氯乙醛2-氯乙酰氯,通过结合细胞大分子而对肝脏造成损害。它们还通过位于肝脏细胞质和微粒体的谷胱甘肽S转移酶的作用形成谷胱甘肽S结合物。这些物质被输送到肾脏,在那里通过β-裂解酶和半胱酸结合物S-化酶的肾处理,导致肾毒性产物的形成。这些代谢物也已知会损害肺部的细支气管克拉拉细胞。(L185)
1,1-Dichloroethene toxicity is caused by its reactive metabolites, which include epoxides, acyl chlorides, and halogenated aldehydes generated via oxidation by cytochrome P-450 2E1. These metabolites, especially 2,2-dichloroacetaldehyde and 2-chloroacetyl chloride, damage the liver by binding to cellular macromolecules. They also form glutathione S conjugates by the action of glutathione S-transferases located in the hepatic cytosol and microsomes. These are delivered to the kidney, where renal processing by beta-lyase and cysteine conjugate S-oxidase lead to nephrotoxic products. The metabolites are also known to damage the bronchiolar Clara cells in the lung. (L185)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌性证据
评估:对于 vinylidene chloride 在人类中的致癌性,证据不足。在实验动物中,vinylidene chloride 的致癌性证据有限。总体评估:vinylidene chloride 的对人致癌性无法分类(第3组)。/在正在进行的卷宗中,将更改为第2B组(可能对人类致癌)/
Evaluation: There is inadequate evidence in humans for the carcinogenicity of vinylidene chloride. There is limited evidence in experimental animals for the carcinogenicity of vinylidene chloride. Overall evaluation: Vinylidene chloride is not classifiable as to its carcinogenicity to humans (Group 3). /To be changed to Group 2B (Possibly carcinogenic to humans) in a volume still in progress/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
根据1986年的癌症指导方针(美国环保局,1986年),1,1-DCE被归为C组,可能是人类致癌物。根据癌症风险评估指导方针的草案修订版(美国环保局,1999年),环保局得出结论,1,1-DCE显示出致癌性的暗示性证据,但没有足够的证据来评估在啮齿动物吸入暴露研究中的人类致癌潜力。在一项终身生物检测中,雄性小鼠在一种暴露下发展出了肾肿瘤,这一发现因雌性小鼠或雄性或雌性大鼠缺乏类似结果以及雄性小鼠与雌性小鼠、雄性大鼠与雌性大鼠以及人类肾细胞之间的酶差异(即CYP2E1)而得到缓和。在细菌系统中,有代谢激活的有限基因毒性证据报告。基于有限的生物检测中大鼠和小鼠在口服途径下没有出现统计学或生物学意义的肿瘤,以及单一吸入生物检测中雄性小鼠的暗示性证据和有限的基因毒性证据,1,1-DCE的数据不足以进行人类致癌潜力的评估。关于1,1-DCE致癌性的人类流行病学研究结果过于有限,无法得出有用的结论。环保局得出结论,单一性别和单一物种的啮齿动物在一次暴露下的肾肿瘤结果过于有限,无法支持暴露-反应评估。
Under the 1986 cancer guidelines (U.S. EPA, 1986), 1,1-DCE is assigned to Group C, possible human carcinogen. Under the draft revised guidelines for carcinogen risk assessment (U.S. EPA, 1999), EPA concludes 1,1-DCE exhibits suggestive evidence of carcinogenicity but not sufficient evidence to assess human carcinogenic potential following inhalation exposure in studies in rodents. Male mice developed kidney tumors at one exposure in a lifetime bioassay, a finding tempered by the absence of similar results in female mice or male or female rats and by the enzymatic differences (i.e., CYP2E1) between male mice and female mice, male and female rats, and human kidney cells. Limited evidence of genotoxicity has been reported in bacterial systems with metabolic activation. The data for 1,1-DCE are inadequate for an assessment of human carcinogenic potential by the oral route, based on the absence of statistically or biologically significant tumors in limited bioassays in rats and mice balanced against the suggestive evidence in male mice in a single bioassay by inhalation and the limited evidence of genotoxicity. The human epidemiological results on the carcinogenicity of 1,1-DCE are too limited to draw useful conclusions. EPA concludes that the results of kidney tumors in one sex and one exposure in a single species of rodents are too limited to support an exposure-response assessment.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
A4;不可归类为人类致癌物。
A4; Not classifiable as a human carcinogen.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
1,1-二氯乙烷(1,1-DCE)通过吸入和口服暴露后可迅速吸收。由于其分子量低和疏性质,皮肤吸收也很可能发生……。在大鼠通过灌胃玉米油给予1,1-DCE的实验中,发现完全的胃肠道吸收发生在<350 mg/kg的剂量下。1,1-DCE容易通过肺泡膜进行传输……。未改变的1,1-DCE的主要排泄途径是通过肺部。然而,大部分的1,1-DCE会迅速代谢为非挥发性化合物和共价结合衍生物。小鼠比大鼠代谢更多的1,1-DCE。例如,当通过口服灌胃玉米油给予50 mg/kg的剂量时,小鼠通过肺部排出了剂量的6%,而大鼠排出了28%的未改变的1,1-DCE。当暴露于10 ppm的浓度下,单次6小时后,小鼠排出了吸收剂量的0.65%,大鼠排出了1.63%的未改变的1,1-DCE。向小鼠腹腔注射125 mg/kg的(14)C-1,1-DCE导致了肾脏、肺和肝脏中共价结合物(基于蛋白含量)的最高浓度。肾脏、肺和肝脏中的共价结合和细胞损伤与这些组织中特定细胞群体内CYP2E1的高浓度相关。
1,1-DCE is rapidly absorbed following inhalation and oral exposures. Because of its low molecular weight and hydrophobic nature, dermal absorption is also likely ... . In rats treated with 1,1-DCE by gavage in corn oil, complete gastrointestinal absorption was found to occur at <350 mg/kg. 1,1-DCE is easily transported across the alveolar membrane. ... The major route of excretion for unchanged 1,1-DCE is through the lung. However, the majority of 1,1-DCE is rapidly metabolized to nonvolatile compounds and covalently bound derivatives. Mice metabolize more 1,1-DCE than do rats. For example, when given 50 mg/kg by oral gavage in corn oil, mice excreted 6% and rats excreted 28% of the dose as unchanged 1,1-DCE through the lungs. When exposed to 10 ppm for a single 6-hour episode, mice excreted 0.65% and rats excreted 1.63% of the absorbed dose as unchanged 1,1-DCE through the lungs. Intraperitoneal administration of 125 mg/kg (14)C-1,1-DCE to mice resulted in the highest concentrations of covalent binding (based on protein content) in the kidney, lung, and liver. The covalent binding and cellular damage in kidney, lung, and liver correlated with the high concentration of CYP2E1 in certain cell populations in these tissues.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
本次调查的目标是阐明暴露途径和口服给药方案对1,1-二氯乙烯(DCE)毒物动力学(TK)的影响。在禁食的雄性Sprague-Dawley大鼠中,吸入100或300 ppm浓度2小时后,吸收的总系统剂量分别为10或30毫克/千克DCE。其他组的大鼠通过静脉注射、一次性灌胃(口服)或胃内灌注(g.i.)在2小时内分别接受了10或30毫克/千克DCE。从插管但未麻醉的动物中采集系列微量血液样本,并通过气相色谱分析DCE含量以获得浓度与时间的关系。吸入导致高峰血浓度和血药浓度-时间曲线下面积(AUC(0)(2))显著高于在相同剂量和相同时间框架内胃内灌注,尽管吸入(AUC(0)(无穷大))值仅略有提高。监测尿N-乙酰-β-D-葡萄糖苷酶(NAG)和γ-谷酰转移酶(GGT)活性作为高剂量组肾脏损伤的指标。吸入后NAG和GGT的排泄比胃内灌注更为明显。通过灌胃给药DCE也产生了比2小时胃内灌注更高的Cmax和AUC(0)(2)值,尽管AUC(0)(无穷大)值差异不大。30毫克/千克的灌胃剂量导致血清山梨醇酶显著升高,这是肝细胞损伤的指标。通过吸入和胃内灌注给药这一剂量仅略有肝毒性。这些发现表明,DCE的TK和靶器官毒性在不同暴露途径以及不同剂量方案之间存在显著差异,使得在健康风险评估中直接外推变得不可行。
The objective of this investigation was to elucidate the effects of route of exposure and oral dosage regimen on the toxicokinetics (TK) of 1,1-dichloroethylene (DCE). Fasted male Sprague-Dawley rats that inhaled 100 or 300 ppm for 2 hr absorbed total systemic doses of (10 or 30 mg/kg DCE, respectively. Other groups of rats received 10 or 30 mg/kg DCE by intravenous injection, bolus gavage (by mouth), or gastric infusion (g.i.) over a 2-hr period. Serial microblood samples were taken from the cannulated, unanesthetized animals and analyzed for DCE content by gas chromatography to obtain concentration versus time profiles. Inhalation resulted in substantially higher peak blood concentrations and area under blood-concentration time curves (AUC(0)(2)) than did gastric infusion of the same dose over the same time frame at each dosage level, although inhalation (AUC(0)(infinity)) values were only modestly higher. Urinary N-acetyl-beta-D-glucosaminidase (NAG) and gamma-glutamyltranspeptidase (GGT) activities were monitored as indices of kidney injury in the high-dose groups. NAG and GGT excretion were much more pronounced after inhalation than gastric infusion. Administration of DCE by gavage also produced much higher Cmax and AUC(0)(2) values than did 2-hr g.i., although AUC(0)(infinity) values were not very different. The 30 mg/kg bolus dose produced marked elevation in serum sorbitol dehydrogenase, an index of hepatocellular injury. Administration of this dose by inhalation and gastric infusion was only marginally hepatotoxic. These findings demonstrate the TK and target organ toxicity of DCE vary substantially between different exposure routes, as well as dosage regimens, making direct extrapolations untenable in health risk assessments.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
当大鼠口服放射性氯乙烯剂量从1毫克/千克体重增加到50毫克/千克体重,或者通过吸入从40毫克/立方米(10-200 ppm)增加到800毫克/立方米时,代谢途径会饱和,因此,较小的剂量百分比通过代谢,更多的通过肺部以氯乙烯的形式排出。在1毫克/千克体重口服剂量和10 ppm吸入剂量的情况下,喂食和不喂食的大鼠在消除方面没有差异。在50毫克/千克体重口服或200 ppm吸入的情况下,喂食大鼠与不喂食大鼠相比,通过肺部排出氯乙烯的量显著增加,尿液中放射性物质的排出量减少。在大鼠经胃、静脉或腹腔给药后,(14)C-氯乙烯的主要排泄途径是肺部:未改变的氯乙烯和相关的二氧化碳都是通过该途径排出的;其他氯乙烯代谢物通过肾脏排出。
As dose level of radioactive vinylidene chloride is incr in rats from 1-50 mg/kg body wt orally, or from 40-800 mg/cu m (10-200 ppm) by inhalation, the metabolic pathway becomes saturated, so that smaller percentage of dose admin is metabolized & more is eliminated via lung as vinylidene chloride. With the 1 mg/kg body wt oral dose & the 10 ppm inhalation dose, there was no difference in elimination by fed versus fasted rats. At 50 mg/kg body wt orally or 200 ppm by inhalation, there was significant incr in excretion of vinylidene chloride via lung & decr in urinary excretion of radioactivity in fed versus fasted rats. The main excretory route for (14)C-vinylidene chloride after intragastric, iv, or ip admin to rats is pulmonary: both unchanged vinylidene chloride & related carbon dioxide are excreted by that route; other VDC metabolites are eliminated via kidneys.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在大鼠中,给药0.5、5.0和50.0毫克/千克剂量后72小时,分别有1.26%、9.70%、16.47%的未改变的氯乙烯通过呼吸排出,以及13.64%、11.35%、6.13%作为放射性 dioxide 排出。主要排泄途径是通过肾脏排泄,分别占给药放射活性的43.55%、53.88%、42.11%。通过胆道系统,分别有15.74%、14.54%、7.65%的活性被排出。
/In rats/ seventy-two hr after dose of 0.5, 5.0 and 50.0 mg/kg, 1.26, 9.70, 16.47% respectively, are exhaled as unchanged vinylidene chloride, and 13.64, 11.35, 6.13% as (14)C-carbon dioxide. Main pathway of elimination is through renal excretion with 43.55, 53.88, 42.11% of the admin radioactivity. Through the biliary system, 15.74, 14.54, 7.65% of the activity are eliminated.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • TSCA:
    Yes
  • 危险等级:
    3
  • 安全说明:
    S16,S29,S36/37,S45,S46,S7
  • 危险品运输编号:
    UN 1303 3/PG 1
  • WGK Germany:
    3
  • 危险类别:
    3
  • 危险品标志:
    Xn,F+
  • 危险类别码:
    R40,R12,R20
  • RTECS号:
    KV9275000
  • 包装等级:
    I
  • 危险标志:
    GHS02,GHS06,GHS08
  • 危险性描述:
    H224,H301,H315,H319,H332,H351
  • 危险性防范说明:
    P210,P281,P301 + P310,P305 + P351 + P338
  • 储存条件:
    储存注意事项: - 储存在阴凉、通风良好的库房中。 - 远离火源和热源,库温不宜超过37℃。 - 包装需密封,避免与空气接触。 - 应与氧化剂、酸类及碱类分开存放,严禁混储。 - 不宜久存,以防变质。 - 使用防爆型照明和通风设施,并禁止使用易产生火花的机械设备和工具。 - 储区应配备泄漏应急处理设备和合适的收容材料。

SDS

SDS:0c1b2b66f4b68dcdfea1ff540cc32791
查看
国标编号: 32040
CAS: 75-35-4
中文名称: 1,1-二氯乙烯
英文名称: 1,1-dichloroethylene;vinylidene chloride
别 名: 偏二氯乙烯乙烯叉二
分子式: C 2 H 2 Cl 2 ;CH 2 CCl 2
分子量: 96.94
熔 点: -122.6℃
密 度: 相对密度(=1)1.21;
蒸汽压: -28℃
溶解性: 不溶于
稳定性: 稳定
外观与性状: 无色液体,带有不愉快气味
危险标记: 7(中闪点易燃液体)
用 途: 用作辅聚剂、粘合剂和用于有机合成

2.对环境的影响:

一、健康危害

侵入途径:吸入、食入、经皮吸收。 健康危害:主要影响中枢神经系统,并有眼及上呼吸道刺激症状。 急性中毒:短时间接触低浓度,眼及咽喉部烧灼感;浓度增高,有眩晕、恶心、呕吐甚至酩酊状;吸入高浓度还可致死。可致角膜损伤及皮肤灼伤。 慢性影响:长期接触,除粘膜刺激症状外,常伴有神经衰弱综合征。

二、毒理学资料及环境行为

毒性:对动物和人有致瘤作用。以吸入最为危险。 急性毒性:LD50200mg/kg(大鼠经口);LC5025210mg/m3,4小时(大鼠吸入);人吸入<5ppm,肝功能略有影响。 亚急性和慢性毒性:动物接触0.397g/m3和0.199g/m3,8小时/天,5天/周,数月后出现肝肾损害。接触低于0.099g/m3,出现轻度肝肾病变。 致突变性:微生物致突变:鼠伤寒沙门氏菌5pph。DNA损伤:大鼠吸入10ppm。 致癌性:IARC致癌性评论:动物阳性,人类无可靠数据。大鼠吸入55ppm×6小时/日×12月,肝血管肉瘤。 致畸性:大鼠吸入200ppm(妊娠)致畸胎作用。

危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。受高热分解产生有毒的腐蚀性烟气。与化剂接触会猛烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳二氧化碳氯化氢光气


3.现场应急监测方法:


4.实验室监测方法:
监测方法 来源 类别
吹扫捕集-气相色谱法 中国环境监测总站
气相色谱法 和废标准检验法》第19版译文,江苏省环境监测中心
气相色谱法 《固体废弃物试验与分析评价手册》中国环境监测总站等译 固体废弃物
色谱/质谱法 美国EPA524.2方法

5.环境标准:
前苏联 车间空气中有害物质的最高容许浓度 50mg/m 3
中国(GHZB1-1999) 地面环境质量标准(I、II、III类域特定值) 0.007mg/L
日本(1993) 环境标准 地面:0.002mg/L
:0.02mg/L
土壤浸出液:0.02mg/L

嗅觉阈浓度 500ppm

6.应急处理处置方法:

一、泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。防止进入下道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 废弃物处置方法:建议用焚烧法处理。废弃物和其它燃料混合焚烧,燃烧要充分,防止生成光气。焚烧炉排出的卤化通过酸洗涤器除去。

二、防护措施

呼吸系统防护:空气中浓度超标时,应该佩戴过滤式防毒面具(半面罩)。紧急事态抢救可撤离时,佩戴隔离式呼吸器。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防静电工作服。 手防护:戴橡胶手套。 其它:工作现场禁止吸烟、进食和饮。工作毕,淋浴更衣。注意个人清洁卫生。

三、急救措施

皮肤接触:立即去被污染的衣着,用大量流动清冲洗,至少15分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清或生理盐彻底冲洗至少15分钟。就医。 吸入:迅速离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输。如呼吸停止,立即进行人工呼吸。就医。 食入:误服者用漱口,给饮牛奶或蛋清。就医。

灭火方法:尽可能将容器从火场移至空旷处。时节保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:雾状、泡沫、干粉、二氧化碳、砂土。用灭火无效。


制备方法与用途

化学性质

偏二氯乙烯是一种具有特殊气味的无色液体,易气化,沸点为31.7℃,折射率为1.4259,相对密度为1.2130,在中几乎不溶,并能溶解于多种有机溶剂。

用途

偏二氯乙烯1,1-二氯乙烯,是制备二菊酸甲酯中间体。该物质不仅自身可聚合,还能与氯乙烯丙烯腈丁二烯甲基丙烯酸甲基丙烯酸甲酯等多种化合物共聚,广泛应用于聚合物工业和电影胶片工业。

1,1-二氯乙烯基础(含至少80%)的共聚物可以制得具有耐火性的偏纶。与丙烯腈丁二烯丙烯酸苯乙烯等物质共聚后,可生成多种合成树脂,适用于制作纤维或薄膜,并可用于纸张或塑料薄膜的表面涂层。

聚偏二氯乙烯纤维能够用于制造织物、帐篷、防虫网和汽车坐垫。聚偏二氯乙烯薄膜透气性和透湿性较低,适合食品包装。此外,在与甲基丙烯酸甲基丙烯酸甲酯共聚时,可用于电影胶片工业。

用途

主要用来生产偏氯乙烯-氯乙烯、偏氯乙烯-丙烯腈和偏氯乙烯-丙烯酸酯类共聚物,并广泛用于合成纤维等制造领域。

生产方法

工业上通常由氯乙烯气反应生成1,1,2-三氯乙烷,再通过10%氢氧化钙溶液氯化氢而得偏二氯乙烯。原料消耗定额为:氯乙烯730千克/吨、870千克/吨、氢氧化钙750千克/吨和三氯乙烷1500千克/吨。

另一种方法是将氯乙烯气在80~90℃条件下以屑为催化剂生成1,1,2-三氯乙烷,再将其与氢氧化钠在相同温度下反应去一分子氯化氢得到粗偏二氯乙烯,最后通过蒸馏即可获得成品。反应方程式如下:[ \text{CH}_2=\text{CHCl} + \text{Cl}_2 \rightarrow [\text{FeCl}_3] \text{CH}_2\text{Cl}-\text{CHCl}_2 + \text{NaOH} \rightarrow \text{CH}_2=\text{CCl}_2 ]

安全特性
  • 类别:易燃液体
  • 毒性分级:高毒
  • 急性毒性
    • 大鼠口服 LD50: 200 毫克/公斤;
    • 小鼠口服 LD50: 194 毫克/公斤。
  • 爆炸物危险特性:与空气混合可爆。
  • 可燃性危险特性:遇明火、高温或化剂易燃;高热分解产生有毒化物气体。
  • 储运特性:库房应通风、低温干燥,避免与化剂和酸类存放在一起。
  • 灭火剂:干粉、干砂、二氧化碳、泡沫、雾状
  • 职业标准:时间加权平均容许浓度(TWA)20 毫克/立方米。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1,1-二氯乙烯copper(II) oxide 作用下, 生成 光气
    参考文献:
    名称:
    Biesalski, Angewandte Chemie, 1924, vol. 37, p. 317
    摘要:
    DOI:
  • 作为产物:
    描述:
    三氯乙烯 在 sodium chloride 、 作用下, 生成 1,1-二氯乙烯
    参考文献:
    名称:
    Pathways of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Zn(0)
    摘要:
    To successfully design treatment systems relying on reactions of chlorocarbons with zero-valent metals, information is needed concerning the kinetics and pathways through which transformations occur. In this study, pathways of chlorinated ethylene reaction with Zn(0) have been elucidated through batch experiments. Data for parent compound disappearance and product appearance were fit to pseudo-first-order rate expressions in order to develop a complete kinetic model. Results indicate that reductive beta-elimination plays an important role, accounting for 15% of tetrachloroethylene (PCE), 30% of trichloroethylene (TCE), 85% of cis-dichloroethylene (cis-DCE), and 95% of trans-dichloroethylene (trans-DCE) reaction. The fraction of PCE, TCE, trans-DCE, and cis-DCE transformation that occurs via reductive elimination increases as the two-electron reduction potential (E-2)for this reaction becomes more favorable relative to hydrogenolysis. In the case of PCE a nd TCE, reductive elimination gives rise to chlorinated acetylenes. Chloroacetylene and dichloroacetylene were synthesized and found to react rapidly with zinc, displaying products consistent with both hydrogenolysis and reduction of the triple bond. Surface area-normalized rate constants (k(SA)) for chlorinated ethylene disappearance correlate well with both one-electron (E-1) and two-electron (E-2) reduction potentials for the appropriate reactions. Correlation with E-2 allows prediction of the distribution of reaction products as well as the rate of disappearance of the parent compound.
    DOI:
    10.1021/es980252o
  • 作为试剂:
    描述:
    N-溴代丁二酰亚胺(NBS)3,3-二甲基-1-丁烯新戊烷二氯甲烷1,1-二氯乙烯 作用下, 反应 1.0h, 生成 丁二酰亚胺N-(2-bromo-3,3.-dimethyl-1-butyl)succinimide3-溴丙酰异氰酸酯 、 alkaline earth salt of/the/ methylsulfuric acid
    参考文献:
    名称:
    Excited-state σ succinimidyl and glutarimidyl radicals: reversible ring opening
    摘要:
    DOI:
    10.1021/ja00389a058
点击查看最新优质反应信息

文献信息

  • Synthesis of poly-functionalized pyrazoles under Vilsmeier-Haack reaction conditions
    作者:Aleksandr V. Popov、Valentina A. Kobelevskaya、Ludmila I. Larina、Igor B. Rozentsveig
    DOI:10.24820/ark.5550190.p010.934
    日期:——
    Synthesis of 1,3-disubstituted 5-chloro-1H-pyrazole-4-carbaldehydes was achieved by formylation of the corresponding 5-chloro-1H-pyrazoles under Vilsmeier-Haack conditions.
    1,3-二取代的 5--1H-吡唑-4-甲醛的合成是通过在 Vilsmeier-Haack 条件下相应的 5--1H-吡唑的甲酰化来实现的。
  • PREPARATION METHOD AND USE OF COMPOUNDS HAVING HIGH INSECTICIDAL ACTIVITIES
    申请人:Li Zhong
    公开号:US20090111847A1
    公开(公告)日:2009-04-30
    The present invention discloses a kind of nitromethylene derivatives as well as their preparation method and their uses. The insecticidal activity tests show that the nitromethylene derivatives of the present invention not only show high insecticidal activities against insects with piercing-sucking type or scratching type mouthparts, such as aphid, leafhopper, plant hopper, thrips and white fly and their resistant strains, but also show high insecticidal activities against Lissorhoptrus oryzophilus , carmine spider mite, and they can also be used to prevent sanitary pest, and white ant.
    本发明公开了一种亚硝基甲生物,以及它们的制备方法和用途。杀虫活性测试表明,本发明的亚硝基甲生物不仅对具有刺吸型或擦伤型口器的昆虫(如蚜虫、叶蝉、植食蝗、蓟马和烟粉虱及其抗性品系)表现出高杀虫活性,而且对稻纵卷叶象、胭脂蜘蛛螨等也表现出高杀虫活性,它们还可用于预防卫生害虫和白蚁。
  • COMPOUNDS AND USES THEREOF
    申请人:Yumanity Therapeutics, Inc.
    公开号:US20190330198A1
    公开(公告)日:2019-10-31
    The present invention features compounds useful in the treatment of neurological disorders. The compounds of the invention, alone or in combination with other pharmaceutically active agents, can be used for treating or preventing neurological disorders.
    本发明涉及用于治疗神经系统疾病的化合物。本发明的化合物可以单独或与其他药用活性剂结合使用,用于治疗或预防神经系统疾病。
  • Formation of 1,4,2-Dithiazolidines or 1,3-Thiazetidines from 1,1-Dichloro-2-nitroethene and Phenylthiourea Derivatives
    作者:Yian Feng、Minming Zou、Runjiang Song、Xusheng Shao、Zhong Li、Xuhong Qian
    DOI:10.1021/acs.joc.6b01307
    日期:2016.11.4
    1,4,2-dithiazolidine or 1,3-thiazetidine heterocycles was developed by reactions of phenylthioureas with 1,1-dichloro-2-nitroethene. The solvent has a significant influence on the type of product formation. 1,4,2-Dithiazolidines were formed in the aprotic solvent chloroform, while in the protic solvent ethanol, 1,3-thiazetidines were the main products.
    通过硫脲与1,1-二-2-硝基乙烯的反应,开发了一种制备1,4,2-二噻唑烷或1,3-噻环丁烷杂环的方法。溶剂对产物形成的类型有重大影响。在质子惰性溶剂氯仿中形成1,4,2-二噻唑烷,而在质子惰性溶剂乙醇中,主要产物为1,3-噻唑烷。
  • Synthesis of 13-alkyl-gon-4-ones
    申请人:Smith; Herchel
    公开号:US03959322A1
    公开(公告)日:1976-05-25
    The preparation of 13-methylgon-4-enes and novel 13-polycarbonalkylgon-4-enes by a new total synthesis is described. 13-Alkylgon-4-enes having progestational, anabolic and androgenic activities are prepared by forming a tetracylic gonane structure unsaturated in the 1,3,5(10),9(11) and 14-positions, selectively reducing in the B- and C-rings, and converting the aromatic A-ring compounds so-produced to gon-4-enes by Birch reduction and hydrolysis.
    描述了通过新的全合成方法制备13-甲基孕-4-和新型13-聚烷基孕-4-。通过形成在1,3,5(10),9(11)和14-位置不饱和的四环孕烷结构,选择性地在B和C环中还原,并将所产生的芳香A环化合物转化为孕-4-,制备具有孕激素、合成激素和雄激素活性的13-烷基孕-4-
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台