摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

三氯乙烯 | 79-01-6

中文名称
三氯乙烯
中文别名
三氯代乙烯;1,1,2-三氯乙烯;无水三氯乙烯
英文名称
Trichloroethylene
英文别名
Trichlorethylen;trichlorethylene;trichloroethene;1,1,2-trichloroethylene;TCE;1,1,2-trichloroethene
三氯乙烯化学式
CAS
79-01-6
化学式
C2HCl3
mdl
MFCD00000838
分子量
131.389
InChiKey
XSTXAVWGXDQKEL-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    -86 °C
  • 沸点:
    87 °C
  • 密度:
    1.463 g/mL at 25 °C(lit.)
  • 蒸气密度:
    4.5 (vs air)
  • 闪点:
    90°C
  • 溶解度:
    Soluble in acetone, ethanol, chloroform, ether (U.S. EPA, 1985), and other organic solvents including bromoform, carbon tetrachloride, methylene chloride, trichloroethylene, and tetrachloroethylene.
  • 暴露限值:
    TLV-TWA 50 ppm (~270 mg/m3) (ACGIH), 100 ppm (MSHA and OSHA); TLV-STEL 200 ppm (ACGIH); ceiling 200 ppm (OSHA); carcinogenicity: Animal Lim ited Evidence, Human Inadequate Evidence (IARC).
  • 介电常数:
    3.4(16℃)
  • LogP:
    2.53 at 20℃
  • 物理描述:
    Trichloroethylene appears as a clear colorless volatile liquid having a chloroform-like odor. Denser than water and is slightly soluble in water. Noncombustible. Used as a solvent, fumigant, in the manufacture of other chemicals, and for many other uses.
  • 颜色/状态:
    Colorless liquid (unless dyed blue)
  • 气味:
    Ethereal odor
  • 味道:
    Sweet burning taste
  • 蒸汽密度:
    4.53 (NTP, 1992) (Relative to Air)
  • 蒸汽压力:
    69 mm Hg at 25 °C
  • 亨利常数:
    0.01 atm-m3/mole
  • 大气OH速率常数:
    2.36e-12 cm3/molecule*sec
  • 稳定性/保质期:
    1. 化学性质:不含稳定剂的三氯乙烯在空气中逐渐被氧化,生成光气一氧化碳氯化氢。也可能生成少量二聚物(六氯丁烯)。反应按游离基历程进行,光照和加热明显促进反应。有分存在时,二氯乙酰氯分解成二乙酸氯化氢,分解生成的酸性物质会腐蚀属。因此,工业用三氯乙烯通常需加入微量稳定剂如酚类对苯二酚)、胺类醇类等。添加稳定剂的三氯乙烯在空气、分和光存在下,即使加热至130℃,也不与一般工业用属材料作用。

    2. 三氯乙烯蒸气加热至700℃以上分解生成二氯乙烯四氯乙烯四氯化碳氯仿以及氯甲烷的混合物。三氯乙烯蒸气与空气一起受强烈光照时完全氧化成二氧化碳氯化氢一氧化碳光气等。在盐存在下,加压加热175℃时,三氯乙烯与碱属或碱土属的氢氧化物溶液或悬浊液反应生成羟基乙酸盐。冷时与盐酸硝酸不反应,但加热时与浓硝酸激烈反应完全分解,通过控制条件可得到三硝基甲烷和一氯二硝基甲烷。在30~50℃条件下,在三氯化铝催化作用下,三氯乙烯氯化氢反应生成1,1,1,2-四氯乙烷。在苛性碱存在下易发生脱氯化氢反应生成二氯乙炔,而二氯乙炔在空气中自燃并爆炸分解。碳酸及液态通常条件下与三氯乙烯不反应,但属铝尤其是粉末状的属铝能促使不含稳定剂的三氯乙烯分解,生成氯化氢的同时引发强烈爆炸或化。反应首先生成三氯化铝,作为Friedel Crafts催化剂促进三氯乙烯缩合生成五丁二烯,并进一步缩合成树脂、焦油。在三氯化铝存在下,三氯乙烯氯仿反应可生成1,1,1,2,3,3-六氯丙烷;与四氯化碳反应则生成1,1,1,2,3,3,3-七氯丙烷。在过氧化物如过氧化苯甲酰存在下,加压加热至150~200℃可得到三氯乙烯的二聚物和三聚物。在三氯化铁催化下易发生化反应生成五氯乙烷六氯乙烷

    3. 稳定性

    4. 禁配物:强氧化剂、强还原剂、强碱、铝、

    5. 避免接触的条件:光照、紫外线

    6. 聚合危害:聚合

    7. 分解产物:氯化氢

  • 自燃温度:
    420 °C (788 °F)
  • 分解:
    Hazardous decomposition products formed under fire conditions - Carbon oxides, hydrogen chloride gas.
  • 粘度:
    0.545 mPa s at 25 °C
  • 腐蚀性:
    Non-corrosive
  • 燃烧热:
    -6.56 kJ/g
  • 汽化热:
    34.54 kJ/mol at 25 °C; 31.40 kJ/mol at 87.21 °C
  • 表面张力:
    0.0264 N/m at 20 °C
  • 电离电位:
    9.45 eV
  • 气味阈值:
    5.00X10-1 mg/l (liquid) (detection in water)
  • 折光率:
    Index of refraction: 1.4773 at 20 °C/D
  • 相对蒸发率:
    3.0 (n-butyl acetate = 1, ethanol = 1.4, acetone = 5.7)
  • 保留指数:
    683;687;690;694;691;688;675;691;696;702;710;698;687.4;691;680;680;676.6;693;694;691;688.1;687.7;691;681;681;691;710;672;686;686;689;673;680;689;710;683;690

计算性质

  • 辛醇/水分配系数(LogP):
    2.6
  • 重原子数:
    5
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

代谢
我们在豚鼠最大化测试中,对哈特利雄性和雌性豚鼠进行了三氯乙烯(TRI)、三乙醇(TCE)或三氯乙酸TCA)的皮内注射,并在注射后24小时收集尿液,通过气相色谱-质谱法测量尿液中代谢物。TRI处理后,雌性豚鼠尿液中的TCA量显著高于雄性,而在总代谢物量(TCA + TCE)上没有性别差异。只有在TCA处理后,尿液中才能检测到TCA。有趣的是,在TCE处理后,不仅TCE,而且TCA也能在两性尿液中检测到,且雌性尿液中的TCA量也高于雄性。进一步的实验显示,在CYP2E1缺失小鼠中,TCE处理后没有检测到尿液中的TCA,但在野生型小鼠中检测到了,这表明CYP2E1参与了从TCE到TCA的代谢过程。豚鼠肝脏中CYP2E1的固有表达在雌性中高于雄性。TRI和TCE处理后尿液中TCA排泄的性别差异可能是由于CYP2E1固有表达的变化。
... We collected urine from Hartley male and female guinea pigs 24 hours after intracutaneous injection of trichloroethylene (TRI), trichloroethanol (TCE) or trichloroacetic acid (TCA) during a guinea pig maximization test and measured the urinary metabolites by gas chromatography-mass spectrometry. After TRI treatment, the amount of TCA was significantly greater in females than males, while there was no sex difference in the total amount (TCA + TCE). TCA was only detected in urine after TCA treatment. Interestingly, not only TCE but also TCA was detected in urine of both sexes after TCE treatment, and the amount of TCA was also greater in females than males. An additional experiment showed that TCE treatment did not result in the detection of urinary TCA in cytochrome P450 (CYP)2E1-null mice TCE but did in wild-type mice, suggesting the involvement of CYP2E1 in the metabolism from TCE to TCA. The constitutive expression of CYP2E1 in the liver of guinea pigs was greater in females than males. The sex difference in urinary TCA excretion after TRI and TCE treatments may be due to variation of the constitutive expression of CYP2E1.
来源:Hazardous Substances Data Bank (HSDB)
代谢
三氯乙烯(TCE)与药物的毒理学相互作用有可能调节TCE的毒性。我们的目标是识别TCE与14种广泛使用药物在人类悬浮肝细胞中的代谢相互作用,并使用微体试验对最强的相互作用进行表征。通过顶空GC-MS测量TCE及其代谢物浓度的变化。肝细胞的结果显示,阿莫西林西咪替丁布洛芬、美芬酸和雷尼替丁没有显著相互作用。萘普生和对乙酰水杨酸显示增加了TCE代谢物的平,而扑热息痛卡马西平红霉素则减少了这些平。最后,双氯芬酸格列齐特柳氮磺吡啶丙戊酸只对一种代谢物平有影响。在14种测试药物中,有5种显示出最强的相互作用,并被选为用微体进行确认,分别是萘普生、对乙酰水杨酸扑热息痛卡马西平丙戊酸。在人类微体中的表征确认了与萘普生的相互作用,通过竞争性抑制三乙醇(TCOH)葡萄糖醛酸化(Ki=2.329 mM)。也确认了卡马西平对TCOH形成的抑制(部分非竞争性,Ki=70 uM)。与人类微体的相互作用在柳氮磺吡啶扑热息痛中没有观察到,与大鼠材料中的先前结果相似。对于丙戊酸,在大鼠中观察到了与微体的相互作用,但在人类中没有。在大鼠和人类肝细胞中,抑制模式显示出相似性,但在物种间微体材料中的机制上注意到了一些差异。
Toxicological interactions with drugs have the potential to modulate the toxicity of trichloroethylene (TCE). Our objective is to identify metabolic interactions between TCE and 14 widely used drugs in human suspended hepatocytes and characterize the strongest using microsomal assays. Changes in concentrations of TCE and its metabolites were measured by headspace GC-MS. Results with hepatocytes show that amoxicillin, cimetidine, ibuprofen, mefenamic acid and ranitidine caused no significant interactions. Naproxen and salicylic acid showed to increase both TCE metabolites levels, whereas acetaminophen, carbamazepine and erythromycin rather decreased them. Finally, diclofenac, gliclazide, sulphasalazine and valproic acid had an impact on the levels of only one metabolite. Among the 14 tested drugs, 5 presented the most potent interactions and were selected for confirmation with microsomes, namely naproxen, salicylic acid, acetaminophen, carbamazepine and valproic acid. Characterization in human microsomes confirmed interaction with naproxen by competitively inhibiting trichloroethanol (TCOH) glucuronidation (Ki=2.329 mM). Inhibition of TCOH formation was also confirmed for carbamazepine (partial non-competitive with Ki=70 uM). Interactions with human microsomes were not observed with salicylic acid and acetaminophen, similar to prior results in rat material. For valproic acid, interactions with microsomes were observed in rat but not in human. Inhibition patterns were shown to be similar in human and rat hepatocytes, but some differences in mechanisms were noted in microsomal material between species. ...
来源:Hazardous Substances Data Bank (HSDB)
代谢
在这项研究中,我们比较了 rats 中三氯乙烯 (TCE) 及其主要代谢物三乙醇 (TCE-OH) 的肾毒性,以试图确定谷胱甘肽途径或甲酸尿症是否可以解释其毒性。雄性大鼠通过口服灌胃给予 TCE (500 mg/kg/天) 或 TCE-OH (100 mg/kg/天) 持续 12 周,并在多个时间点使用肾毒性生物标志物测量肾损伤的程度,并在终止前评估肾小管细胞增殖。在多个时间点也确定了甲酸尿症的程度,而在研究结束时确定了肾病理学以及血浆尿素肌酐。TCE 在暴露的前两周内非常轻微地增加了肾损伤的生物标志物、总蛋白和葡萄糖,并在暴露 1 周和 5 周后在尿液中增加了 Kim-1 和 NAG,而 TCE-OH 并未在尿液中产生这些生物标志物的持续增加。然而,这两种化学物质都显著并持续地增加了尿液中甲酸的排泄,程度非常相似。TCE 和 TCE-OH 处理的大鼠肝脏中蛋酸合成酶的活性被抑制了约 50%,表明叶酸合成受阻。与对照相比,TCE 和 TCE-OH 处理后的肾病理学和肾小管细胞增殖都有所减少。我们的发现并没有明确确定导致 TCE 肾毒性的途径,但确实为通过谷胱甘肽结合的代谢提供了一些支持。
... In this study we have compared the renal toxicity of TCE and /its major metabolite trichloroethanol/ (TCE-OH) in rats to try and ascertain whether the glutathione pathway or formic aciduria can account for the toxicity. Male rats were given TCE (500 mg/kg/day) or TCE-OH at (100 mg/kg/day) /by oral gavage/ for 12 weeks and the extent of renal injury measured at several time points using biomarkers of nephrotoxicity and prior to termination assessing renal tubule cell proliferation. The extent of formic aciduria was also determined at several time points, while renal pathology and plasma urea and creatinine were determined at the end of the study. TCE produced a very mild increase in biomarkers of renal injury, total protein, and glucose over the first two weeks of exposure and increased Kim-1 and NAG in urine after 1 and 5 weeks exposure, while TCE-OH did not produce a consistent increase in these biomarkers in urine. However, both chemicals produced a marked and sustained increase in the excretion of formic acid in urine to a very similar extent. The activity of methionine synthase in the liver of TCE and TCE-OH treated rats was inhibited by about 50% indicative of a block in folate synthesis. Both renal pathology and renal tubule cell proliferation were reduced after TCE and TCE-OH treatment compared to controls. Our findings do not clearly identify the pathway which is responsible for the renal toxicity of TCE but do provide some support for metabolism via glutathione conjugation.
来源:Hazardous Substances Data Bank (HSDB)
代谢
胎盘外膜定义了妊娠室,并为防止感染性微生物沿妊娠女性生殖道上升提供了屏障。我们测试了三氯乙烯(TCE)的生物活性代谢物是否会减少胎盘外膜对病原体刺激的先天免疫反应的假设。胎盘外膜在无脂壁酸(LTA)或脂多糖(LPS)存在的情况下,与TCE代谢物三醋酸TCA)或S-(1,2-二氯乙烯基)-L-半胱氨酸(DCVC)共同培养4、8和24小时以模拟感染。此外,膜与DCVC和B群链球菌(GBS)共同培养。DCVC(5-50微摩尔)在培养组织中的LTA-、LPS-和GBS-刺激的细胞因子释放早在4小时就显著抑制(P <= 0.05)。相比之下,TCA(高达500微摩尔)并未抑制组织切片中LTA刺激的细胞因子释放。由于细胞因子是对抗感染微生物的重要介质,这些发现表明TCE暴露可能会潜在地改变妊娠期间对感染的易感性。
Extraplacental membranes define the gestational compartment and provide a barrier to infectious microorganisms ascending the gravid female reproductive tract. We tested the hypothesis that bioactive metabolites of trichloroethylene (TCE) decrease pathogen-stimulated innate immune response of extraplacental membranes. Extraplacental membranes were cultured for 4, 8, and 24 hr with the TCE metabolites trichloroacetate (TCA) or S-(1,2-dichlorovinyl)-l-cysteine (DCVC) in the absence or presence of lipoteichoic acid (LTA) or lipopolysaccharide (LPS) to simulate infection. In addition, membranes were cocultured with DCVC and Group B Streptococcus (GBS). DCVC (5-50 uM) significantly inhibited LTA-, LPS-, and GBS-stimulated cytokine release from tissue cultures as early as 4 hr (P </= 0.05). In contrast, TCA (up to 500 uM) did not inhibit LTA-stimulated cytokine release from tissue punches. Because cytokines are important mediators for host response to infectious microorganisms these findings suggest that TCE exposure could potentially modify susceptibility to infection during pregnancy.
来源:Hazardous Substances Data Bank (HSDB)
代谢
三氯乙烯已知的人类代谢物包括合物。
Trichloroethylene has known human metabolites that include Chloral hydrate.
来源:NORMAN Suspect List Exchange
毒理性
  • 毒性总结
三氯乙烯(TCE)是一种无色液体(除非染成蓝色)。TCE的主要用途是在属清洗或脱脂。早先,TCE曾用作提取天然脂肪和油,如棕榈油、椰子油和大豆油。它还用作香料、啤酒花和咖啡脱因的提取溶剂。美国食品和药物管理局禁止了这些三氯乙烯的使用。其用于化妆品和药品的做法也停止了。它还曾用作产科的麻醉剂和镇痛剂。人类暴露和毒性:过度暴露的潜在症状包括头痛、眩晕、视觉障碍、疲劳、头晕、震颤、嗜睡、恶心和呕吐、眼睛和皮肤刺激、皮炎、心脏心律不齐、感觉异常、肝脏损伤。在非常高的浓度(10,000 ppm)下已有死亡案例,与心脏心律不齐和严重肝损伤有关。长期暴露在38至172 ppm平的工人报告了嗜睡、头晕、头痛和恶心症状,但没有明显的三叉神经障碍。在一项对定期暴露不超过35 ppm的荷兰工人的研究中,调查者发现眨眼反射测量的三叉神经损伤没有影响,但确实观察到了暴露年数与颞肌反射之间的显著关联,这也是三叉神经功能的另一种测量方式。职业性TCE暴露与微核频率增加有关。TCE在HepG2细胞中产生遗传毒性效应。在一级癌症发病率队列研究中,TCE暴露与肾癌风险增加有关。在大多数一级癌症发病率研究中,肝癌发病率升高。母亲居住地靠近工业排放的代溶剂可能与后代某些出生缺陷有关,特别是在年龄较大的母亲中。动物研究:对大鼠和小鼠通过口服和吸入长期暴露于TCE的毒性研究表明,相对肝脏重量和相关组织病理学和生化变化一致增加。在肾脏中描述的效果包括小鼠连续暴露于> 75 ppm (> 390 mg/m³) TCE 30天后相对重量增加和在大鼠暴露于> 50 ppm (> 260 mg/m³) 12周后未见明显组织病理学变化的肾功能障碍。在大鼠经灌胃(每天一次,每周4至5天,持续52周,剂量为50或250 mg/kg)暴露于TCE的情况下,雄性大鼠白血病(免疫母细胞淋巴肉瘤)的发生率与剂量有关。雌性大鼠的肿瘤发生率没有增加。在TCE暴露的大鼠和小鼠(每天7小时,每周5天,持续104周,剂量为50、150或450 ppm)中,肿瘤主要发现于小鼠的造血系统、肺和乳腺以及大鼠的垂体和乳腺。将TCE以相当于每天最高300 mg/kg体重的剂量加入小鼠和大鼠的饮食中,对两代(F1和F2)的存活和幼崽的睾丸重量产生了边缘效应。一般来说,TCE及其大多数主要代谢物在广泛的细菌、低等真核生物和体外及体内哺乳动物测试系统中并不是强遗传毒物。在哺乳动物细胞培养研究中,TCE没有诱导中国仓鼠卵巢(CHO)细胞的染色体畸变,没有在大鼠肝细胞中诱导非计划DNA合成,但它确实在CHO细胞中诱导了姐妹染色单体交换,在鼠淋巴瘤细胞中诱导了基因突变,在大鼠胚胎细胞中诱导了形态转化。在啮齿动物体内研究中,TCE没有诱导非计划DNA合成、姐妹染色单体交换、显性致死突变或染色体畸变。TCE在鼠肝中产生了DNA单链断裂或碱溶性位点的混合结果,并在小鼠中产生了微核形成的阳性结果。生态毒性研究:TCE对与代谢、繁殖和生长相关的基因和蛋白质有影响。在静态更新测试中,将鱼(Carassius auratus)暴露于0.1 mg/L TCE,持续>/= 60天,结果显著减少了体重和改变了组织病理学。在8.43-77.3 mg/L的毒性浓度范围内,31天大的胖头鱼失去了群游行为,在面附近呈螺旋状游动,过度活跃并出血。TCE在20年的时间内在冷杉(Abies alba)、挪威云杉(Picea abies)、山毛榉(Fagus silvatica)和其他树种上诱导了黄化(针叶漂白)、坏死(针叶死亡)和过早针叶脱落。
IDENTIFICATION AND USE: Trichloroethylene (TCE) is a colorless liquid (unless dyed blue). The major use of TCE is in metal cleaning or degreasing. TCE was used earlier as an extraction solvent for natural fats and oils, such as palm, coconut and soya bean oils. It was also an extraction solvent for spices, hops and the decaffeination of coffee. The United States Food and Drug Administration banned these uses of trichloroethylene. Its use in cosmetic and drug products was also discontinued. It was also used as both an anesthetic and an analgesic in obstetrics. HUMAN EXPOSURE AND TOXICITY: Potential symptoms of overexposure are headache, vertigo, visual disturbance, fatigue, giddiness, tremors, somnolence, nausea and vomiting, irritation of eyes and skin, dermatitis, cardiac arrhythmias, paresthesia, liver injury. Death has occurred at very high concentrations (10,000 ppm) and was associated with cardiac arrhythmia and massive liver damage. Workers chronically exposed to levels between 38 and 172 ppm reported symptoms of sleepiness, dizziness, headache, and nausea, but no apparent trigeminal nerve disorders. In a study of Dutch workers regularly exposed to no more than 35 ppm, investigators found no trigeminal nerve impairment as measured by blink reflex, but did observe a significant association between years of exposure and masseter reflex, which is another measure of trigeminal nerve function. Increased micronucleus frequency is associated with occupational TCE exposure. TCE exerts genotoxic effects in HepG2 cells. In Tier I cancer incidence cohort studies, TCE exposure was associated with an increased risk of kidney cancer. Liver cancer incidence was elevated in most of the Tier I cancer incidence studies. Maternal residential proximity to industrial emissions of chlorinated solvents might be associated with selected birth defects in offspring, especially among older mothers. ANIMAL STUDIES: Studies on the longer-term toxicity of TCE in rats and mice exposed orally and by inhalation showed consistent increases in relative liver weight and associated histopathological and biochemical changes. The effects described in kidney included increased relative weights in mice exposed continuously to > 75 ppm (> 390 mg/cu m) TCE for 30 days and renal dysfunction in the absence of marked histopathological changes in rats exposed to > 50 ppm (> 260 mg/cu m) for 12 weeks. In rats exposed to TCE by gavage (50 or 250 mg/kg, once daily, 4 to 5 days/week for 52 weeks) there was a dose-related increase in the incidence of leukemia (immunoblastic lymphosarcomas) in males. No increase was noted in the tumor incidence of females. In TCE exposed rat and mice (7 hours/day, 5 days/week for 104 weeks at 50, 150, or 450 ppm), tumors were found mainly in the hematopoietic system, lungs, and mammary glands of mice and in the pituitary and mammary glands of rats. Administration of TCE in the diet of mice and rats at concentrations equivalent to doses of up to 300 mg/kg bw per day for two generations resulted in marginal effects on testicular weight and on survival of pups of both the F1 and F2 generations at the highest dose. In general, TCE and most of its major metabolites are not potent genotoxicants in a broad range of bacterial, lower eukaryotic, and in vitro and in vivo mammalian test systems. In mammalian cell-culture studies, TCE did not induce chromosomal aberrations in Chinese hamster ovary (CHO) cells, unscheduled DNA synthesis in rat hepatocytes, but it did induce sister chromatid exchange in CHO cells, gene mutations in mouse lymphoma cells, and morphological transformation of rat embryo cells. In rodent in vivo studies, TCE did not induce unscheduled DNA synthesis, sister chromatid exchange, dominant lethal mutations, or chromosomal aberrations. TCE gave mixed results for DNA single-strand breaks or alkali-labile sites in mouse liver and positive results for micronucleus formation in mice. ECOTOXICITY STUDIES: TCE had effects on genes and proteins related to metabolism, reproduction, and growth in D. magna. Exposure of goldfish (Carassius auratus) to 0.1 mg/L TCE for >/= 60 days in a static-renewal test resulted in significantly reduced body weight and altered histopathology. Affected fathead minnows, 31 days old, in toxicant concentrations ranging from 8.43-77.3 mg/L, lost schooling behavior, swam in a corkscrew/spiral pattern near the surface, were hyperactive and hemorrhaging. TCE induced chlorosis (bleaching of needles), necrosis (death of needles), and premature needle loss over 2 decades in fir (Abies alba), Norway spruce (Picea abies), beech (Fagus silvatica), and other tree species.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
三氯乙烯的毒性和致癌性主要被认为是由于其代谢物所引起的,包括三氯乙酸二氯乙酸合物。三氯乙烯的肾毒性和肾致癌性归因于谷胱甘肽结合,形成反应性的、含的代谢物。已知二氯乙酸可以抑制丙酮酸脱氢酶激酶,而合物可以抑制酒精脱氢酶。在啮齿动物的研究表明,神经毒性效应可能是由三氯乙烯嵌入脑膜或其改变脑磷脂氨基酸脂肪酸模式的能力所引起的。三氯乙烯致癌性的一个机制被认为是其代谢物诱导的过氧化物酶体增殖。
The toxic and carcinogenic effects of trichloroethylene are believed to be caused mainly by its metabolites, including trichloroacetic acid, dichloroacetic acid, and chloral hydrate. The nephrotoxicity and nephrocarcinogenicity of TRI have been attributed to glutathione conjunction, which forms reactive, sulfur-containing metabolites. Dichloroacetic acid is known to inhibit pyruvate dehydrogenase kinase, while chloral hydrate inhibits alcohol dehydrogenase. Studies in rodents have shown that neurotoxic effects may be caused by trichloroethylene's incorporation into brain membranes or ability to alter the fatty acid pattern of brain phospholipids and amino acids. One of the mechanisms of trichloroethylene's carcinogenicity is believed to be the peroxisome proliferation induced by its metabolites. (L14, T12, A46)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌性证据
整体评估:第一组:对人类致癌。基于充分的流行病学证据表明与肾癌有关,实验动物和接触人群的研究提供了强烈的机制支持。流行病学数据还发现了与非霍奇淋巴瘤和肝癌关联的有限证据。工作组还指出,关于三氯乙烯的数据在展示人类和实验动物之间肿瘤部位一致性方面非常有启发性;在没有常见的“背景”肿瘤的情况下,动物中观察到了几种罕见的癌症。
Overall Evaluation: Group 1: Carcinogenic to humans. Based on sufficient epidemiological evidence for cancer of the kidney, with strong mechanistic support from studies in experimental animals and exposed humans. The epidemiological data also identified limited evidence for an association with liver cancer and non-Hodgkin lymphoma. The Working Group also noted that the data for trichloroethylene are very informative with regard to demonstrating tumor-site concordance between humans and experimental animals; several rare cancers were observed in animals in the absence of common "background" tumors.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
A2:疑似人类致癌物。
A2: Suspected human carcinogen.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
三氯乙烯根据对人类致癌性的充分证据被认为是一种人类致癌物。
Trichloroethylene is known to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in humans.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
1990年,在克罗地亚四家使用三氯乙烯作为清洁溶剂的干洗店中,收集了10个人的血液和尿液样本。空气中的三氯乙烯浓度在25-40 ppm [134-215 mg/m³]。周一早上血液中三氯乙烯的平均平为0.38 umol/L [50 ug/L](范围,0.15-3.58 umol/L)(20-70 ug/L),周三下午为3.39 umol/L [445 ug/L](范围,0.46-12.71 umol/L)(60-1670 ug/L)...
Blood and urine samples were collected in 1990 from 10 people working in four dry cleaning shops in Croatia, where trichloroethylene was used as the cleaning solvent. The concentration of trichloroethylene in the air was 25-40 ppm [134-215 mg/cu m]. The mean blood levels of trichloroethylene were 0.38 umol/L [50 ug/L] on Monday morning (range, 0.15- 3.58 umol/L) (20-70 ug/L) and 3.39 umol/L [445 ug/L] on Wednesday afternoon (range, 0.46- 12.71 umol/L (60-1670 ug/L]. ...
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
TCE通过口腔和吸入途径迅速被吸收进入系统性循环。大多数TCE在肝脏通过细胞色素P450酶(CYPs)进行氧化,一小部分通过谷胱甘肽S-转移酶(GSTs)与谷胱甘ione(GSH)结合。因此,TCE存在两种不同的代谢途径。TCE可能被氧化为三种初始代谢物之一:醛、TCE环氧化物二氯乙酰氯。这些代谢物迅速经过氧化和/或还原生成三醋酸TCA)和三乙醇(TCOH),这是氧化途径的主要终产物。TCOH要么被氧化为TCA,要么与葡萄糖醛酸结合。TCOH葡萄糖醛酸酯通过尿液和胆汁排出。胆汁中的TCOH可能通过肠道中的解回到TCOH,进而再吸收并可能转化为TCA,实现肠肝循环。由于TCA与血浆蛋白结合强烈且排泄缓慢,因此在体内积累。相比之下,由TCA或TCOH形成的DCA在人体内的血液平非常低或无法检测到。相对少量的TCE可以在肝脏与GSH结合形成S-(1,2-二氯乙烯基)谷胱甘肽(DCVG)。DCVG然后从肝细胞流出进入血浆和胆汁,分别转移到肾脏和小肠。血浆中的DCVG通过γ-谷酰转移酶和二肽酶在肾脏内转化为半胱酸结合物S-(1,2-二氯乙烯基)-L-半胱氨酸(DCVC)。胆汁中的DCVG可以经历非肾脏处理转化为DCVC,随后通过肠肝循环传递到肾脏。DCVC在途径中代表一个分支点。它可以通过N-乙酰化被解毒,或者通过位于肾近端小管细胞的肾β-裂解酶激活为活性醇(或者在一定程度上,通过含黄素的单加氧酶激活为DCVC亚砜)。
TCE is rapidly absorbed into the systemic circulation via the oral and inhalation routes. The majority of TCE undergoes oxidation in the liver by CYPs, with a small proportion being conjugated with glutathione (GSH) via glutathione S-transferases (GSTs). Thus, two distinct metabolic pathways exist for TCE. ... TCE may be oxidized to yield one of three initial metabolites: chloral, TCE-epoxide, and dichloroacetylchloride. These metabolites rapidly undergo oxidation and/or reduction to yield trichloroacetate (TCA) and trichloroethanol (TCOH), the major end products of the oxidative pathway. TCOH is either oxidized to TCA or glucuronidated. TCOH glucuronide is excreted via the urine and bile. That in the bile may undergo enterohepatic recirculation by hydrolysis to TCOH in the gut, with reabsorption and the possibility of conversion to TCA. TCA accumulates in the body due to strong plasma protein binding and slow excretion. In contrast, blood levels of DCA, formed by TCA dechlorination or from TCOH, are very low or nondetectable in humans. Relatively small amounts of TCE can be conjugated in the liver with GSH to form S-(1,2-dichlorovinyl)glutathione (DCVG). DCVG is then effluxed from the hepatocyte into plasma and bile for translocation to the kidney and small intestine, respectively. The plasma DCVG is intrarenally converted by gamma-glutamyltransferase and dipeptidases to the cysteine conjugate S-(1,2-dichlorovinyl)-L-cysteine (DCVC). The DCVG secreted into the bile can undergo extrarenal processing to DCVC, that is subsequently delivered to the kidney by enterohepatic recirculation. DCVC represents a branch point in the pathway. It may be detoxified through N-acetylation or bioactivated to reactive thiols via renal beta-lyase located in renal proximal tubular cells (or to a lesser extent, bioactivated to DCVC sulfoxide via flavin-containing monooxygenases).
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
TCE通过所有环境暴露途径,包括口服摄入、吸入和皮肤接触,被迅速且广泛吸收。吸收的TCE在体内分布,可以在脂肪和其他组织中积累。
TCE is rapidly and extensively absorbed by all routes of environmental exposure, including oral ingestion, inhalation and skin contact. Absorbed TCE is distributed throughout the body, where it can accumulate in fat and other tissues.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
三氯乙烯(TCE)在雄性斯普拉格-道利(S-D)大鼠体内的药物动力学被表征如下:(1) 在吸入50或500 ppm TCE以及之后,(2) 口服8 mg/kg TCE之后,以及(3) 动脉内注射8 mg/kg TCE之后。在首次暴露后从5分钟到24小时的时间点采集血液和组织(包括肝脏、肾脏、脂肪、骨骼肌、心脏、脾脏、胃肠道和大脑)。为了预测观察到的脂肪中TCE的缓慢释放,将脂肪室修改为扩散限制。为了准确预测三种暴露途径下TCE的较慢肝脏清除,有必要增加一个深层肝脏室。在给雄性B6C3F1小鼠口服300-2000 mg/kg TCE后,模拟肝脏浓度的预测也通过增加深层肝脏室得到了改善。使用一种新颖于PBPK建模的交叉验证技术对肝脏预测进行了校准和验证。分隔室并没有显著影响对肝脏、脂肪或静脉血中TCE浓度的预测。
... The pharmacokinetics of trichloroethylene (TCE) in male Sprague-Dawley (S-D) rats were characterized (1) during and after inhalation exposure to 50 or 500 ppm TCE, (2) following administration of 8 mg/kg TCE PO, and (3) following intra-arterial injection of 8 mg/kg TCE. Blood and tissues (including liver, kidney, fat, skeletal muscle, heart, spleen, gastrointestinal tract, and brain) were collected at selected time-points from 5 min up to 24 hr post initial exposure. The fat compartment was modified to be diffusion-limited to predict the observed slow release of TCE from the fat. The addition of a deep liver compartment was necessary to accurately predict the slower hepatic clearance of TCE for all three exposure routes. Simulations of liver concentrations following gavage of male B6C3F1 mice with 300-2000 mg/kg TCE were also improved with the addition of a deep liver compartment. Liver predictions were calibrated and validated using a cross-validation technique novel to PBPK modeling. Splitting of compartments did not significantly affect predictions of TCE concentrations in the liver, fat, or venous blood. ...
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 职业暴露等级:
    B
  • 职业暴露限值:
    TWA: 25.0 ppm, STEL: 2.0 ppm
  • TSCA:
    Yes
  • 危险等级:
    6.1
  • 立即威胁生命和健康浓度:
    1,000 ppm
  • 危险品标志:
    T
  • 安全说明:
    S36/37,S45,S53,S61
  • 危险类别码:
    R67,R45,R36/38,R52/53
  • WGK Germany:
    3
  • 海关编码:
    2903220000
  • 危险品运输编号:
    UN 1710 6.1/PG 3
  • 危险类别:
    6.1
  • RTECS号:
    KX4550000
  • 包装等级:
    III
  • 危险标志:
    GHS07,GHS08
  • 危险性描述:
    H315,H319,H336,H341,H350,H412
  • 危险性防范说明:
    P201,P261,P273,P281,P305 + P351 + P338,P308 + P313
  • 储存条件:
    储存注意事项: - 储存在阴凉、通风良好的库房中。 - 远离火源和热源,库温不超过32℃,相对湿度不超过80%。 - 包装需密封,避免与空气接触。 - 应与氧化剂、还原剂、碱类、金属粉末及食用化学品分开存放,切忌混储。 - 不宜大量储存或久存。 - 配备相应种类和数量的消防器材。 - 储区应设有泄漏应急处理设备和合适的收容材料。

SDS

SDS:dc4672eb588ea9d115c5dd0942912302
查看
国标编号: 61580
CAS: 79-01-6
中文名称: 三氯乙烯
英文名称: trichloroethylene
别 名: 乙炔化三
分子式: C 2 HCl 3 ;Cl 2 CCHCl
分子量: 131.39
熔 点: -87.1℃ 沸点:87.1℃
密 度: 相对密度(=1)1.46;
蒸汽压: 32℃
溶解性: 不溶于,溶于乙醇乙醚,可混溶于多数有机溶剂。
稳定性: 稳定
外观与性状: 无色透明液体,有似氯仿的气味
危险标记: 14(有毒品)
用 途: 用作溶剂,用于脱脂、冷冻、农药、香料、橡胶工业、洗涤织物等

2、对环境的影响
该物质对环境有严重危害,应特别注意对空气、环境及源的污染。在对人类重要食物链中,特别是在生物体中发生生物蓄积。

一、健康危害

侵入途径:吸入、食入、经皮吸收。
健康危害:本品主要对中枢神经系统有麻醉作用。亦可引起肝、肾、心脏、三叉神经损害。

二、毒理学资料及环境行为

毒性:有蓄积作用。
急性毒性:LD502402mg/kg(小鼠经口);LC5045292mg/m3,4小时(小鼠吸入);137752mg/m3,1小时(大鼠吸入);人吸入6.89g/m3×6分钟,粘膜刺激;人吸入5.38g/m3×120分钟,视力减退;人吸入400ppm嗅到有气味,轻微眼刺激;人吸入2000ppm,极强烈的气味,不能耐受。
亚急性和慢性毒性:大鼠吸入0.54g/m3,5小时/天,5天/周,3个月,神经传导速度减慢。
致突变性:DNA抑制:人淋巴细胞5mg/L。姊妹染色单体交换:人淋巴细胞178mg/L。
生殖毒性:大鼠吸入最低中毒浓度(TCL0):1800ppm(24小时)(孕1~20天),引起肌肉骨骼发育异常。小鼠吸入最低中毒浓度(TCL0):100ppm/7小时(5天,雄性),精子生成异常。
致癌性:IARC致癌性评论:动物阳性,人类不明确。

危险特性:遇明火、高热能引起燃烧爆炸。与强氧化剂接触可发生化学反应。受紫外光照射或在燃烧或加热时分解产生有毒的光气和腐蚀性的盐酸烟雾。
燃烧(分解)产物:一氧化碳二氧化碳氯化氢光气

3、现场应急监测方法
气体检测管法;便携式气相色谱法;质检测管法
直接进样气相色谱法(1,1,2-三氯乙烯)
气体速测管(北京劳保所产品、德国德尔格公司产品)

4、实验室监测方法
监测方法 来源 类别
顶空气相色谱法 GB/T17130-1997
无泵型采样器气相色谱法 WS/T144-1999 作业场所空气
吡啶-碱比色法;
气相色谱法 《空气中有害物质的测定方法》(第二版),杭士平主编 空气
气相色谱法 《固体废弃物试验与分析评价手册》中国环境监测总站等译 固体废弃物
色谱/质谱法 美国EPA524.2方法

5、环境标准
中国(TJ36-79) 车间空气中有害物质的最高容许浓度 30mg/m3
前苏联(1987) 环境空气中最高容许浓度 4.0mg/m3(一次值)
1.0mg/m3(日均值)
中国(待颁布) 饮用源中有害物质的最高容许浓度 0.07mg/L
中国(GB8978-1996) 污综合排放标准 一级:0.3mg/L
二级:0.6mg/L
三级:1.0mg/L
中国(GHZB1-1999) 地表环境质量标准(I、II、III类域) 0.005mg/L
日本(1993) 环境标准 地面:0.03mg/L
:0.3mg/L
土壤浸出液:0.03mg/L
嗅觉阈浓度 250ppm

6、应急处理处置方法

一、泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。尽可能切断泄漏源,防止进入下道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。
废弃物处置方法:建议用焚烧法处理。废弃物和其它燃料混合焚烧,燃烧要充分,防止生成光气。焚烧炉排出的卤化氢通过酸洗涤器除去。此外,从废料中回收三氯乙烯,再循环使用。

二、防护措施

呼吸系统防护:可能接触其蒸气时,应该佩戴自吸过滤式防毒面具(半面罩)。紧急事态抢救或撤离时,佩戴循环式氧气呼吸器。
眼睛防护:戴化学安全防护眼镜。
身体防护:穿防毒物渗透工作服。
手防护:戴防化学品手套。
其它:工作现场禁止吸烟、进食和饮。工作毕,沐浴更衣。单独存放被毒物污染的衣服。洗后备用。注意个人清洁卫生。

三、急救措施

皮肤接触:立即脱去被污染的衣着,用肥皂和清彻底冲洗皮肤。就医。
眼睛接触:提起眼睑,用流动清或生理盐冲洗,就医。
吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
食入:饮足量温,催吐,就医。

灭火方法:消防人员须戴氧气呼吸器。喷保持火场容器冷却,直至灭火结束。灭火剂:雾状、泡沫、干粉、二氧化碳、砂土。




制备方法与用途

根据提供的信息,以下是关于三氯乙烯的一些关键点:

生产方法
  1. 乙炔

  2. 乙烯直接化法

  3. 乙烯化法

物理化学性质
  • 无色稳定、低沸点的重质油状液体,具有类似氯仿的气味。
  • 易溶于有机溶剂,微溶于
主要用途
  1. 属洗涤剂和干洗剂:用于去除油脂和其他污渍。
  2. 农用杀虫剂:可以作为驱肠虫药或防治某些寄生虫病。
  3. 工业溶剂:广泛应用于有机合成、农药生产等领域。
  4. 萃取溶剂:常用来从咖啡中提取咖啡因
急性毒性
  • 口服大鼠LD50为5650毫克/公斤;小鼠为2402毫克/公斤。
  • 刺激数据表明对皮肤有重度刺激作用,对眼睛有中度刺激作用。
爆炸与可燃危险特性
  • 与空气混合可以爆炸。
  • 受热或遇明火时燃烧并释放有毒化物气体。
职业健康安全标准
  • 时间加权平均容许浓度(TWA)为270毫克/立方米;短时间接触极限值(STEL)为405毫克/立方米。
  • 储运要求:库房应保持通风、低温和干燥,并与其他化学品分开存放。
安全措施
  • 使用时必须配备适当的个人防护装备,如呼吸器和防护眼镜。
  • 库存和运输中要避免高温环境,并采取防爆措施。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    三氯乙烯air 作用下, 生成 光气
    参考文献:
    名称:
    Little, J., British Journal of Industrial Medicine, 1955, vol. 12, p. 304 - 308
    摘要:
    DOI:
  • 作为产物:
    描述:
    乙烯盐酸氧气copper(II) oxide 作用下, 生成 三氯乙烯
    参考文献:
    名称:
    Manufacture of halogenated olefins
    摘要:
    公开号:
    US02308489A1
  • 作为试剂:
    描述:
    参考文献:
    名称:
    Prelog; Stepan, Collection of Czechoslovak Chemical Communications, 1935, vol. 7, p. 93,101
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • [EN] CATALYST AND PROCESS USING THE CATALYST FOR MANUFACTURING FLUORINATED HYDROCARBONS<br/>[FR] CATALYSEUR ET PROCÉDÉ UTILISANT LE CATALYSEUR POUR LA FABRICATION D'HYDROCARBURES FLUORÉS
    申请人:MEXICHEM FLUOR SA DE CV
    公开号:WO2018046928A1
    公开(公告)日:2018-03-15
    A catalyst comprising chromia and at least one additional metal or compound thereof and wherein the catalyst has a total pore volume of greater than 0.3 cm3/g and the mean pore diameter is greater than or equal to 90 Å, wherein the total pore volume is measured by N2 adsorption porosimetry and the mean pore diameter is measured by N2 BET adsorption porosimetry, and wherein the at least one additional metal is selected from Li, Na, K, Ca, Mg, Cs, Sc, Al, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, In, Pt, Cu, Ag, Au, Zn, La, Ce and mixtures thereof.
    一种催化剂,包括氧化铬和至少一种额外属或其化合物,其中催化剂的总孔体积大于0.3 cm3/g,平均孔径大于或等于90 Å,总孔体积通过N2吸附孔隙度法测量,平均孔径通过N2 BET吸附孔隙度法测量,至少一种额外属从Li、Na、K、Ca、Mg、Cs、Sc、Al、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Co、Rh、Ir、Ni、Pd、In、Pt、Cu、Ag、Au、Zn、La、Ce和它们的混合物中选择。
  • Halocarbon Encapsulation via Halogen···π Interactions in a Bispyrazole-Based Cryptand
    作者:Ashish Verma、Kapil Tomar、Parimal K. Bharadwaj
    DOI:10.1021/acs.cgd.8b01471
    日期:2019.1.2
    structures clearly revealed that halogen bonding (C–Cl/Br···π (pyrazole)) and hydrogen bonding (C–H···π(pyrazole)) interactions played a key role in stabilizing the halogenated guests inside the hydrophobic cavity of cryptand. At the same time, the cage is efficiently able to exclude hydrophilic solvent molecules, like, water and methanol, suggesting the hydrophobic nature of the cavity. Due to the comparably
    一种新的基于bispyrazole膨胀穴状配体经由具有160埃的内部腔体的席夫碱缩合反应合成3用疏性性质。穴状分子具有富电子的多个吡唑环,可增强与客体分子的弱非共价相互作用。研究了穴状配体的主客体能力,用于包封最不活泼的卤素键供体分子(具有较小的σ孔大小),即CH 2 Cl 2,CHCl 3,CCl 4,C 2 HCl 3,C 2 H 4 Cl 2和C 2 H 4 Br 2。晶体结构分析清楚地表明,卤素键(C–Cl / Br··π(吡唑))和氢键(CH–··π(吡唑))的相互作用在稳定卤代物内部起着关键作用。穴状的疏腔。同时,该笼子能够有效地排除亲性溶剂分子,例如甲醇,表明该腔体具有疏性。由于C 2 H 4 Br 2中的σ孔相对较大,因此它显示出与主体穴体最强的卤素键相互作用,而CH 2 Cl 2的相互作用最弱。σ孔尺寸最小的宾客。此外,穴状体能够根据客人的大小调节其中央腔。对于C
  • Flash Chemistry Using Trichlorovinyllithium: Switching the Reaction Pathways by High-resolution Reaction Time Control
    作者:Aiichiro Nagaki、Yusuke Takahashi、Andrea Henseler、Chika Matsuo、Jun-ichi Yoshida
    DOI:10.1246/cl.140980
    日期:2015.2.5
    High-resolution reaction time control in flow microreactors enables the reaction-pathway switching of trichlorovinyllithium generated by the H/Li exchange of trichloroethene. The method was successfully applied to the synthesis of 1,1,2-trichloroalkenes, 1-chloroalkynes, and unsymmetrically disubstituted ethynes.
    流微反应器中高分辨率的反应时间控制使得通过三氯乙烯的H/Li交换生成的三氯乙烯能够在反应途径之间切换。该方法已成功应用于1,1,2-三烯烃、1-炔烃和非对称二取代炔烃的合成。
  • Synthesis and Singlet Oxygen Reactivity of 1,2-Diaryloxyethenes and Selected Sulfur and Nitrogen Analogs
    作者:Gregory Nkepang、Praveen K. Pogula、Moses Bio、Youngjae You
    DOI:10.1111/j.1751-1097.2012.01095.x
    日期:2012.5
    oxygen‐mediated drug release. Even though 1,2‐diaryloxyethenes look very simple, their synthesis was not an easy task. Previous methods are limited to symmetric molecules, lengthy step and low yield. We report on a facile synthetic method not only for 1,2‐diaryloxyethenes but also their sulfur and nitrogen analogs in yields ranging from 40 to 90% with more than 90% purity at the vinylation reaction
    1,2-二芳氧基乙烯最近被提议作为单线态氧介导的药物释放的连接体。尽管 1,2-二芳氧基乙烯看起来非常简单,但它们的合成并非易事。以前的方法仅限于对称分子、冗长的步骤和低产率。我们报告了一种简便的合成方法,不仅可以用于 1,2-二芳氧基乙烯,还可以用于它们的和氮类似物,收率范围为 40% 至 90%,在乙烯基化反应中纯度超过 90%。
  • A novel entry to xanthones by an intramolecular Diels-Alder reaction involving 2-(1,2-dichlorovinyloxy) aryl dienones
    作者:Katerina Otrubova、Anne E. Fitzgerald、Neelakandha S. Mani
    DOI:10.1016/j.tet.2018.08.007
    日期:2018.9
    of synthetic methods are described in the literature for the preparation of xanthones—a prominent class of tricyclic molecules that occur widely in nature. Majority of these reported methods involve linking the two aromatic rings and forming the central pyrone ring using a variety of classical and non-classical cyclization strategies. In a conceptually different approach, we describe here a new xanthone
    文献中描述了多种用于制备氧杂蒽酮的合成方法,所述杂合酮是自然界中广泛存在的一类重要的三环分子。这些报道的方法大多数涉及使用各种经典和非经典环化策略连接两个芳环并形成中心喃环。在概念上不同的方法中,我们在这里描述了一种新的x吨酮合成方法,其中吡喃酮和第二芳环均通过涉及2-(1,2-二氯乙烯基氧基)芳基二烯酮的分子内环加成反应在一个步骤中锻造而成。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台