摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

四氯乙烯 | 127-18-4

中文名称
四氯乙烯
中文别名
过氯乙烯;全氯乙烯
英文名称
1,1,2,2-tetrachloroethylene
英文别名
Tetrachloroethylene;tetrachlorethylene;1,1,2,2-tetrachloroethene
四氯乙烯化学式
CAS
127-18-4
化学式
C2Cl4
mdl
MFCD00000834
分子量
165.834
InChiKey
CYTYCFOTNPOANT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    -22 °C (lit.)
  • 沸点:
    121 °C (lit.)
  • 密度:
    1.623 g/mL at 25 °C (lit.)
  • 蒸气密度:
    5.83 (vs air)
  • 闪点:
    120-121°C
  • 溶解度:
    水中的溶解度:0.15g/L,25°C
  • 最大波长(λmax):
    λ: 290 nm Amax: 1.00λ: 295 nm Amax: 0.30λ: 300 nm Amax: ≤0.20λ: 305 nm Amax: 0.10λ: 350 nm Amax: 0.05λ: 400 nm Amax: 0.03
  • 介电常数:
    2.5(21℃)
  • 暴露限值:
    TLV-TWA 50 ppm (~325 mg/m3) (ACGIH), 100 ppm (MSHA and OSHA); TLV-STEL 200 ppm (ACGIH); carcinogenicity: Animal Limited Evidence.
  • LogP:
    2.53 at 20℃
  • 物理描述:
    Perchloroethylene appears as a clear colorless volatile liquid having an ether-like odor. Noncombustible. Insoluble in water. Vapors heavier than air. Density approximately 13.5 lb / gal. Used as dry cleaning solvent, a degreasing solvent, a drying agent for metals, and in the manufacture of other chemicals.
  • 颜色/状态:
    Colorless liquid
  • 气味:
    Ether-like odor
  • 蒸汽密度:
    5.83 (NTP, 1992) (Relative to Air)
  • 蒸汽压力:
    18.5 mm Hg at 25 °C
  • 亨利常数:
    0.02 atm-m3/mole
  • 大气OH速率常数:
    1.67e-13 cm3/molecule*sec
  • 稳定性/保质期:
    1. 无色透明液体,具有类似乙醚的气味,能溶解多种物质(如橡胶、树脂、脂肪、AlCl3、S、I2、HgCl2),还能溶解脂肪、油类、焦油、橡胶、天然树脂及芳香族有机酸(苯甲酸、肉桂酸、水杨酸)。大多数合成树脂在四氯乙烯中溶解或溶胀,而氟树脂、环氧树脂、酚醛树脂等几乎不溶。硫、碘和氯化汞也能被其溶解。与水的相互溶解度很小,在25℃时,四氯乙烯在水中的溶解度为0.015%,而水在四氯乙烯中的溶解度为0.0105%。它不易燃,性质稳定,即使在无空气、湿气和催化剂存在的情况下加热到500℃,仍然非常稳定,并且具有抗水解的特性。与乙醇、乙醚、氯仿、苯混溶,在约10000倍体积的水中也能溶解。 2. 四氯乙烯化学性质稳定。纯净物质在空气中的阴暗处不被氧化,但在紫外光作用下会逐渐氧化成三氯乙酰氯及少量光气。工业用四氯乙烯需添加酚类(对苯二酚)、胺类、醇类、腈类等作为稳定剂;而医药级则添加醇类和百里酚。含有稳定剂的四氯乙烯即使加热至140℃,对金属材料也无明显腐蚀作用。不含稳定剂的四氯乙烯在光的作用下与水接触时会逐渐水解成三氯代乙酸和氯化氢,在无催化剂、空气和水分的情况下加热到500℃左右是稳定的,但与红热管中的空气一起通过时则分解生成一氧化碳、氯和光气。700℃与活性炭接触会产生六氯乙烷和六氯苯;它与臭氧反应生成光气和三氯乙酰氯,并且在硫酸和硝酸混合酸中作用时生成三氯乙酰氯和少量四氯二硝基乙烷;与发烟硝酸作用则产生同样的产物,而与二氧化氮在100℃反应生成四氯二硝基乙烷。氢化过程中生成四氯乙烷,在高压下与氨作用分解成氯化铵和碳。它与金属钾在其熔点附近发生爆炸性反应,但不与金属钠反应。经光氯化反应可生成六氯乙烷;在氟里昂-113(CClF2CCl2F)的制备中,在三氯化铝存在下与其他氯代烃发生缩合反应也能生成高沸点物质。
  • 自燃温度:
    >650 °C
  • 分解:
    When in contact with activated charcoal decomposes to form hexachloroethane and hexachlorobenzene at 700 °C.
  • 粘度:
    Liquid (cP): 0.932 at 15 °C; 0.839 at 25 °C; 0.657 at 50 °C; 0.534 at 75 °C. Vapor: 9900 cP at 60 °C
  • 腐蚀性:
    Corrosion of aluminum, iron, and zinc, which is negligible unless water is present, can be inhibited by the addition of stabilizers
  • 燃烧热:
    679.9 kJ/mol (constant pressure with formation of aq hydrochloric acid; 831.8 kJ/mol (constant volume at 18.7 °C) (to convert J to cal, divide by 4.184)
  • 汽化热:
    90.2 BTU/lb = 50.1 cal/g = 2.10X10+5 J/kg
  • 表面张力:
    31.74 dynes/cm at 20 °C in contact with vapor
  • 电离电位:
    9.32 eV
  • 气味阈值:
    The distinctive odor of tetrachloroethylene does not necessarily provide adequate warning. Because tetrachloroethylene quickly desensitizes olfactory responses, persons can suffer exposure to vapor concentrations in excess of TLV limits without smelling it.
  • 折光率:
    Index of refraction: 1.5053 at 20 °C/D
  • 相对蒸发率:
    Evaporation rate slower than that for trichloroethylene, about 3-1.
  • 保留指数:
    794.8;796;801;803;799;801;804;809;814;825;814;807.3;801;797;794.51;794;803;807;804.7;796.52;803;811;793;793;794;797;811;785;800;801.8;800.3;789;797;789;796

计算性质

  • 辛醇/水分配系数(LogP):
    3.4
  • 重原子数:
    6
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

代谢
尽管四氯乙烯与其它氯代溶剂相比总体代谢较低,但对其代谢的研究在人类志愿者和实验动物中已经进行了广泛的研究,包括体内和体外技术的应用。研究显示,产生了许多代谢物,其中一些已知具有细胞毒性、致突变性或两者兼有。四氯乙烯的代谢可以看作有三个途径。第一个是细胞色素P-450介导(CYP介导)的氧化。第二个和第三个途径共享一个起始点:直接与谷胱甘肽结合形成S-(1,2,2-三氯乙烯基)谷胱甘肽(TCVG),然后进一步处理成S-(1,2,2-三氯乙烯基)-L-半胱氨酸(TCVC)。对于第二个途径,β-裂合酶催化从TCVC形成反应性产物。第三个途径独立于β-裂合酶:TCVC通过乙酰化和亚磺酰化反应进一步处理。这些途径都会形成致基因毒性和细胞毒性的代谢物。主要的代谢途径是CYP途径,其次是β-裂合酶途径,然后是β-裂合酶独立途径。TCVC衍生物在毒理学上具有重要意义,但在数量上是次要的代谢物。
Despite the low overall metabolism of tetrachloroethylene compared with other chlorinated solvents, its metabolism has been studied extensively in both human volunteers and laboratory animals, using both in vivo and in vitro techniques. The studies showed that many metabolites are produced, including some known to be cytotoxic, mutagenic or both. Tetrachloroethylene metabolism can be viewed as having three pathways. The first is cytochrome P-450-mediated (CYP-mediated) oxidation. The second and third share a starting point: direct conjugation with glutathione to S-(1,2,2-trichlorovinyl)glutathione (TCVG) and then further processing to S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC). For the second pathway, beta-lyase catalyzes the formation of reactive products from TCVC. The third pathway is independent of beta-lyase: TCVC is processed further by acetylation and sulfoxidation reactions. Genotoxic and cytotoxic metabolites are formed by each of these pathways. The predominant metabolic pathway is the CYP path, followed by the beta-lyase pathway and then the beta-lyase independent pathway. The TCVC derivatives are toxicologically important but quantitatively minor metabolites.
来源:Hazardous Substances Data Bank (HSDB)
代谢
三氯乙烯(TRI)和四氯乙烯(TETRA)是广泛用于各种工业的溶剂,两者都是普遍存在的环境污染物。... 七名人类志愿者通过吸入暴露于1 ppm的TRI或TETRA,持续6小时,收集生物样本进行分析,包括暴露期间和暴露后长达6天的时间。测定了血液和尿液中TRI、TETRA、自由三氯乙醇(TCOH)、总TCOH(自由TCOH加上葡萄糖醛酸化的TCOH)和三氯乙酸的浓度;在肺泡呼吸中测量了TRI和TETRA的浓度。毒物动力学时间过程和经典毒物动力学参数的经验分析被与之前的人类志愿者研究进行比较,这些研究中的暴露至少是现在的10倍。从性质上讲,TRI和TETRA的毒物动力学与之前的人类研究一致。从数量上讲,肺泡保留和通过呼气清除的情况与之前发现的相似,但血液和尿液数据表明存在一些可能的毒物动力学差异。对于TRI,当前研究的数据支持较低的表观血气分配系数,较大的表观代谢清除率,较少的TCA产生,以及与之前研究相比,更多的TCOH葡萄糖醛酸化。对于TETRA,当前数据表明TCA的形成与之前的研究相似或略低。总TETRA代谢的经验估计中的变异性和不确定性很大,不同研究之间的置信区间有显著的重叠。...
Trichloroethylene (TRI) and tetrachloroethylene (TETRA) are solvents that have been widely used in a variety of industries, and both are widespread environmental contaminants. ... Seven human volunteers were exposed by inhalation to 1 ppm of TRI or TETRA for 6 hr, with biological samples collected for analysis during exposure and up to 6 days postexposure. Concentrations of TRI, TETRA, free trichloroethanol (TCOH), total TCOH (free TCOH plus glucuronidated TCOH), and trichloroacetic acid (TCA) were determined in blood and urine; TRI and TETRA concentrations were measured in alveolar breath. Toxicokinetic time courses and empirical analyses of classical toxicokinetic parameters were compared with those reported in previous human volunteer studies, most of which involved exposures that were at least 10 fold higher. Qualitatively, TRI and TETRA toxicokinetics were consistent with previous human studies. Quantitatively, alveolar retention and clearance by exhalation were similar to those found previously but blood and urine data suggest a number of possible toxicokinetic differences. For TRI, data from the current study support lower apparent blood-air partition coefficients, greater apparent metabolic clearance, less TCA production, and greater glucuronidation of TCOH as compared to previous studies. For TETRA, the current data suggest TCA formation that is similar or slightly lower than that of previous studies. Variability and uncertainty in empirical estimates of total TETRA metabolism are substantial, with confidence intervals among different studies substantially overlapping. ...
来源:Hazardous Substances Data Bank (HSDB)
代谢
四氯乙烯通过CYP途径代谢的两个主要产物是三氯乙酰氯和草酰氯。
The two major products of tetrachloroethylene metabolism by the CYP pathway are trichloroacetyl chloride and oxalyl chloride.
来源:Hazardous Substances Data Bank (HSDB)
代谢
β-裂解酶途径:四氯乙烯与谷胱甘肽结合形成S-(1,2,2-三氯乙烯基)谷胱甘肽,随后通过γ-谷氨酰转移酶和氨肽酶处理,生成S-(1,2,2-三氯乙烯基)-L-半胱氨酸(TCVC)。
The beta-lyase pathway: Tetrachloroethylene is conjugated with glutathione to S-(1,2,2-trichlorovinyl) glutathione and is later processed by gamma-glutamyl transpeptidase and aminopeptidase to S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC).
来源:Hazardous Substances Data Bank (HSDB)
代谢
四氯乙烯可以通过吸入、口服和皮肤接触轻易被吸收。一旦四氯乙烯被吸收,其相对较高的脂溶性会导致其分布到脂肪组织中。部分四氯乙烯会通过细胞色素P-450酶和谷胱甘肽结合途径代谢为三氯乙酸(TCA),然后通过尿液排出。剩余未代谢的四氯乙烯会通过呼吸排出。(L116)
Tetrachloroethylene is readily absorbed following inhalation, oral, and dermal exposure. Once tetrachloroethylene is absorbed, its relatively high lipophilicity results in distribution to fatty tissue. Some tetrachloroethylene is metabolized to trichloroacetic acid (TCA) by cytochrome P-450 enzymes and the glutathione-conjugation pathway, then excreted in the urine. The remaining unmetabolized tetrachloroethylene is exhaled. (L116)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
四氯乙烯(PCE)是一种无色液体。它被用于纺织工业中的干洗以及加工和整理。PCE既用于金属的冷清洗和蒸汽脱脂,也用作合成氟碳化合物和作为热交换流体的化学中间体。在兽医学中,它被用作驱虫剂。人体研究:过度暴露的潜在症状包括眼睛、鼻子和喉咙的刺激、恶心、面部和颈部潮红、眩晕、头晕、不协调、头痛、嗜睡、皮肤红斑和肝脏损伤。据报道,急性暴露于极高剂量时,肝脏和肾脏毒性是急性暴露的影响。在长期接触PCE的干洗工人中,早期肾脏损伤或功能障碍的标志物水平升高归因于暴露。在儿童中,估计摄入量为1.6-4.8 g/kg bw时,已导致呕吐、胃肠道出血、休克,甚至在一个案例中死亡。流行病学研究表明,在妊娠和儿童早期暴露于受PCE污染的饮用水的人群中,成年后患癫痫和某些类型癌症(如宫颈癌)的风险可能会增加。产前和儿童早期暴露于受PCE污染的饮用水可能与成年后长期亚临床视觉功能障碍有关,特别是在颜色辨别方面。在早期生命暴露于受PCE污染的饮用水的成年女性中,没有发现与成年期发病的生殖障碍有意义的关联。干洗工人与对照组之间的染色体畸变(CA)频率没有显著差异,但分析显示CA频率与就业持续时间及暴露于PCE的频率有显著关联。与对照相比,干洗工人的微核频率和由碱性彗星试验检测到的DNA损伤显著增加。动物研究:经皮给药暴露的兔子出现了严重的红斑和水肿,伴有皮肤坏死。在一项对豚鼠的研究中,将1毫升(1.62克)未稀释的PCE涂在皮肤上导致了严重的核溶解、水肿、海绵状变性以及假嗜酸性粒细胞浸润。大鼠在较高浓度(>1000 ppm,每天暴露4次,每次7小时)下暴露,导致中枢神经系统抑制,包括共济失调、嗜睡和麻醉。随着反复暴露,效果减弱,提示产生了耐受性。大鼠每周5天,连续4周,每天接受405毫克/公斤体重的PCE,显示出相对肝脏重量增加和肝脏苯胺羟化酶活性增加。在一项研究中,通过灌胃给药将PCE给予大鼠和小鼠11天,剂量为100、250、500或1000毫克/公斤/天,表明小鼠对PCE的肝脏效果比大鼠更敏感。在所有剂量下小鼠观察到中央小叶肿胀,并且在剂量>250毫克/公斤/天时观察到相对肝脏重量增加。在大鼠中,只有在最高剂量下才明显观察到肝脏的毒性作用。大鼠以300或600 ppm的浓度吸入PCE,每天6小时,每周5天,持续12个月,并额外观察18个月。在雄性或雌性中未发现肿瘤发生率显著增加。大鼠每天8小时,连续27周,吸入70、230或470 ppm的四氯乙烯,对生殖性能没有不良影响。大鼠在怀孕的第6-15天暴露于2060毫克/立方米空气中的PCE,显示出体重减轻和吸收数量略有增加。没有发现致畸作用。在同一研究中,暴露于2060毫克/立方米空气中的17只小鼠的幼崽显示出体重减轻。在17窝中,所有窝都显示出颅骨骨化的延迟,10窝显示出皮下水肿发生率的增加,4窝出现胸骨分裂。无论是在有代谢激活还是无代谢激活的情况下,PCE都没有诱导中国仓鼠卵巢细胞发生染色体畸变或姐妹染色单体交换。在大肠杆菌K12中,PCE在体外是无诱变性的,无论是在有代谢激活还是无代谢激活的情况下。生态毒理学研究:地下水及相关土壤气体中的PCE似乎没有减少小哺乳动物的数量或损害个体的健康。PCE对两栖动物胚胎具有致畸性。PCE对日本medaka具有致畸性。在野外研究中,PCE被添加到初始浓度为0.44毫克/升和1.2毫克/升的自然池塘中。在较高浓度下,水蚤的数量在1天内降至零,在较低浓度下,水蚤的数量在3.5天内降至零。
IDENTIFICATION AND USE: Teterachloroethylene (PCE) is a colorless liquid. It is used in the textile industry for dry-cleaning and for processing and finishing. PCE is used in both cold cleaning and vapor degreasing of metals, it is also used as a chemical intermediate in the synthesis of fluorocarbons, and as a heat-exchange fluid. It is used as anthelmintic in veterinary medicine. HUMAN STUDIES: Potential symptoms of overexposure are irritation of eyes, nose and throat, nausea, flushing of face and neck, vertigo, dizziness, incoordination, headache, somnolence, skin erythema, and liver damage. Liver and kidney toxicity have been reported as effects of acute exposures to very high doses. In dry cleaners chronically exposed to PCE, increased levels of markers of early renal damage or dysfunction were attributed to the exposure. In children, estimated intakes of 1.6-4.8 g/kg bw have produced vomiting, gastrointestinal bleeding, shock, and even death in one case. Epidemiology studies suggest that the risk of epilepsy and certain types of cancer such as cervical cancer may be increased among adults who were exposed to PCE-contaminated drinking water exposure during gestation and early childhood. Prenatal and early childhood exposure to PCE-contaminated drinking water may be associated with long-term subclinical visual dysfunction in adulthood, particularly with respect to color discrimination. No meaningful associations were found among adult women with early life exposure to PCE-contaminated drinking water and adult-onset reproductive disorders. There were no significant differences in chromosome aberrations (CA) frequency between dry cleaning workers and the controls, but analysis showed a significant association of CA frequency with employment duration and frequency of exposure to PCE. The micronuclei frequency and DNA damage detected by alkaline comet assay were significantly increased in dry cleaning workers compared to the controls. ANIMAL STUDIES: In rabbits exposed by dermal application, severe erythema and edema with necrosis of the skin was noted. In a study on guinea-pigs, 1 mL (1.62 g) of undiluted PCE applied to the skin caused severe karyolisis, edema, spongiosis, and pseudoeosinophilic infiltration. Exposure of rats at higher concentrations (>1000 ppm for four 7 hr/day exposures) resulted in CNS depression, including ataxia, somnolence, and anesthesia. Effects were diminished with repeated exposures, suggesting the development of tolerance. Rats receiving 405 mg of PCE per kg bw, for 5 days/week, during 4 weeks, showed an increased relative liver weight and increased liver aniline hydroxylase activity. Differential sensitivity of mice and rats to hepatic effects of PCE is indicated in a study that administered the compound by gavage to rats and mice for 11 days at 100, 250, 500, or 1000 mg/kg/day. Centrilobular swelling was observed at all doses in mice, and increased relative liver weights were seen for doses >250 mg/kg/day. In rats, evidence of toxic effects in the liver was only apparent at the highest dose. Rats were exposed to PCE by inhalation 6 hr/day, 5 days/week for 12 months at 300 or 600 ppm, with an additional 18 months of observation. No significant increases in tumor incidence were found for males or females. Inhalation exposure of rats 8 hr/day for 27 weeks at 70, 230, or 470 ppm tetrachloroethylene resulted in no adverse effects on reproductive performance. Rats exposed to PCE at 2060 mg/cu m air on days 6-15 of pregnancy showed reduced body weight and a slightly increased number of resorptions. No teratogenic effects were found. In the same study, pups of 17 mice, exposed to 2060 mg/cu m on days 6-15 of pregnancy showed a reduced body weight. Out of 17 litters, all showed delayed ossification of skull bones, 10 litters showed an increase in the incidence of subcutaneous edema, and 4, split sternebrae. PCE did not induce chromosomal aberrations or sister chromatid exchanges in Chinese hamster ovary cells with or without metabolic activation. In Escherichia coli K12, PCE was non-mutagenic in vitro, with or without metabolic activation. ECOTOXICITY STUDIES: PCE in groundwater and in related soil gas did not appear to reduce the size of small mammal populations or impair the health of individuals. PCE was teratogenic to amphibian embryos. PCE was teratogenic to the Japanese medaka. In field studies, PCE was added to a natural pond at the initial concentrations measured at 0.44 mg/L and 1.2 mg/L. The numbers of Daphnia declined to zero within 1 day at the higher concentration and within 3.5 days at the lower concentration.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
四氯乙烯被认为会通过改变大脑磷脂和氨基酸的脂肪酸模式,或者被整合进大脑膜中,从而可能改变神经传导速度,从而影响中枢神经系统。四氯乙烯的肝脏毒性主要是由其代谢物三氯乙酸(TCA)引起的,它会诱导肝细胞过氧化物酶体,导致DNA损伤,进而引发肝癌。还认为它通过抑制细胞膜ATP酶和降低肝细胞ATP水平,特异性地干扰能量依赖性的肝脏运输功能。
Tetrachloroethylene is believed to affect the central nervous system by altering the fatty acid pattern of brain phospholipids and amino acids, or being incorporated into brain membranes, which may alter neural conduction velocity. Tetrachloroethylene's liver toxicity is caused mainly by its metabolite, trichloroacetic acid (TCA), which induces hepatocellular peroxisomes, causing DNA damage and leading to liver cancer. It is also thought to interfere specifically with energy-dependent hepatic transport functions by inhibiting cell membrane ATPases and decreasing hepatocyte ATP levels. (L116, A63)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌性证据
评估:对于四氯乙烯对人类的致癌性,证据有限。已经观察到与膀胱癌的正相关。在实验动物中,有足够的证据表明四氯乙烯具有致癌性。四氯乙烯可能对人类致癌(2A组)。
Evaluation: There is limited evidence in humans for the carcinogenicity of tetrachloroethylene. Positive associations have been observed for cancer of the bladder. There is sufficient evidence in experimental animals for the carcinogenicity of tetrachloroethylene. Tetrachloroethylene is probably carcinogenic to humans (Group 2A).
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
A3:已确认的动物致癌物,对人类的相关性未知。
A3: Confirmed animal carcinogen with unknown relevance to humans.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
四氯乙烯根据实验动物研究中充分的致癌性证据,被合理预期为人类致癌物。
Tetrachloroethylene is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
四氯乙烯(四氯)及其S-共轭物S-(1,2,2-三氯乙烯基)谷胱甘肽(TCVG)的诱变性使用改良的Ames预培养分析进行了研究。在存在含有高浓度γ-谷氨酰转肽酶(GGT)和二肽酶的大鼠肾脏颗粒组分的情况下,TCVG是一种强效诱变剂。纯化的四氯在没有外源代谢激活的条件下或在不利于氧化代谢的条件下不具有诱变性。将四氯与纯化的大鼠肝脏谷胱甘肽(GSH)S-转移酶以及GSH和大鼠肾脏组分预培养,根据高效液相色谱(HPLC)分析和Ames试验中明确的有诱变反应,可以随时间依赖性地形成TCVG。在隔离灌注的大鼠肝脏中进行的四氯实验表明TCVG的形成并随胆汁排出;在存在肾脏颗粒组分的情况下,向隔离灌注肝脏中加入四氯后收集的胆汁在大肠杆菌中明确具有诱变性。在所有情况下,GGT抑制剂丝氨酸硼酸盐或β-裂解酶抑制剂氨基氧乙酸可以减少诱变性。这些结果支持了这一建议,即四氯形成的GSH S-共轭物通过 mercapturic 酸途径的酶和β-裂解酶的裂解可能涉及大鼠中这种卤代烯烃的肾致癌效应。
The mutagenicity of tetrachloroethene (tetra) and its S conjugate, S-(1,2,2-trichlorovinyl)glutathione (TCVG) was investigated using a modified Ames preincubation assay. TCVG was a potent mutagen in presence of rat kidney particulate fractions containing high concentrations of gamma-glutamyl transpeptidase (GGT) and dipeptidases. Purified tetra was not mutagenic without exogenous metabolic activation or under conditions favoring oxidative metabolism. Preincubation of tetra with purified rat liver glutathione (GSH) S-transferases in presence of GSH and rat kidney fractions resulted in a time-dependent formation of TCVG as determined by (HPLC) analysis and in an unequivocal mutagenic response in the Ames test. Experiments with tetra in the isolated perfused rat liver demonstrated TCVG formation and its excretion with the bile; bile collected after the addition of tetra to the isolated perfused liver was unequivocally mutagenic in bacteria in the presence of kidney particulate fractions. The mutagenicity was reduced in all cases by the GGT inhibitor serine borate or the beta-lyase inhibitor aminooxyacetic acid. These results support the suggestion that cleavage of the GSH S conjugate formed from tetra by the enzymes of the mercapturic acid pathway and by beta-lyase may be involved in the nephrocarcinogenic effects of this haloalkene in rats.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
这篇文章报告了一个针对小鼠、大鼠和人类的四氯乙烯(全氯乙烯或干洗溶剂)毒物动力学“协调一致”的生理药代动力学(PBPK)模型的发展,该模型包括了四氯乙烯的氧化和谷胱甘肽(GSH)结合,氧化代谢物三氯乙酸的内部动力学,以及GSH结合代谢物N-乙酰化三氯乙烯半胱氨酸和二氯乙酸的尿液排泄动力学。该模型使用了比以往任何单独分析都要广泛的体外和体内数据,体外数据用于初步或“基线”参数估计,体内数据集分为用于“校准”和用于“评估”的数据集。参数校准使用有限的贝叶斯分析,涉及平坦先验,并通过马尔可夫链蒙特卡洛(MCMC)方法获得后验众数来进行推断。如预期的那样,吸收的四氯乙烯的主要消除途径是作为母化合物呼出,代谢占总摄入量的不到20%,除了口服暴露的小鼠,在低剂量下代谢预计略超过50%。在所有三种物种中,血液中四氯乙烯的浓度、四氯乙烯氧化的程度以及TCA的产生量都得到了很好的估计,剩余不确定性大约为2倍。然而,GSH结合的估计量在人类中范围相当宽(大约3000倍),在小鼠中范围也相当宽(大约60倍)。尽管小鼠的GSH结合即使在高端估计下也低于氧化估计,但在人类中,GSH结合的估计率范围从远低于到远高于四氯乙烯氧化的率。目前尚不清楚这一范围在多大程度上反映了不确定性、变异性或两者的结合。重要的是,通过将总四氯乙烯代谢分离为单独的氧化和结合途径,这种分析方法也符合最近国家研究委员会审查中推荐的方法,从而调和了之前发表的PBPK模型之间的差异,一些模型认为人类四氯乙烯代谢低,而另一些模型则预测人类四氯乙烯代谢高。实质上,如果加上一些额外的限定条件,两个结论都与数据一致:在人类中,氧化代谢是低的,而GSH结合代谢可能是高或低,不确定性个体间变异性跨越三个数量级。为了更好地描述人类GSH结合的不确定性和变异性,需要更多关于四氯乙烯GSH结合内部动力学(如血液和组织中的三氯乙烯谷胱甘肽或三氯乙烯半胱氨酸)的直接数据。
This article reports on the development of a "harmonized" PBPK model for the toxicokinetics of perchloroethylene (tetrachloroethylene or perc) in mice, rats, and humans that includes both oxidation and glutathione (GSH) conjugation of perc, the internal kinetics of the oxidative metabolite trichloroacetic acid (TCA), and the urinary excretion kinetics of the GSH conjugation metabolites N-Acetylated trichlorovinyl cysteine and dichloroacetic acid. The model utilizes a wider range of in vitro and in vivo data than any previous analysis alone, with in vitro data used for initial, or "baseline," parameter estimates, and in vivo datasets separated into those used for "calibration" and those used for "evaluation." Parameter calibration utilizes a limited Bayesian analysis involving flat priors and making inferences only using posterior modes obtained via Markov chain Monte Carlo (MCMC). As expected, the major route of elimination of absorbed perc is predicted to be exhalation as parent compound, with metabolism accounting for less than 20% of intake except in the case of mice exposed orally, in which metabolism is predicted to be slightly over 50% at lower exposures. In all three species, the concentration of perc in blood, the extent of perc oxidation, and the amount of TCA production is well-estimated, with residual uncertainties of approximately 2-fold. However, the resulting range of estimates for the amount of GSH conjugation is quite wide in humans (approximately 3000-fold) and mice (approximately 60-fold). While even high-end estimates of GSH conjugation in mice are lower than estimates of oxidation, in humans the estimated rates range from much lower to much higher than rates for perc oxidation. It is unclear to what extent this range reflects uncertainty, variability, or a combination. Importantly, by separating total perc metabolism into separate oxidative and conjugative pathways, an approach also recommended in a recent National Research Council review, this analysis reconciles the disparity between those previously published PBPK models that concluded low perc metabolism in humans and those that predicted high perc metabolism in humans. In essence, both conclusions are consistent with the data if augmented with some additional qualifications: in humans, oxidative metabolism is low, while GSH conjugation metabolism may be high or low, with uncertainty and/or interindividual variability spanning three orders of magnitude. More direct data on the internal kinetics of perc GSH conjugation, such as trichlorovinyl glutathione or tricholorvinyl cysteine in blood and/or tissues, would be needed to better characterize the uncertainty and variability in GSH conjugation in humans.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
四氯乙烯是一种挥发性、亲脂性的小分子,经吸入和口服暴露后可迅速且广泛地被吸收。它也可以通过皮肤迅速吸收,但经皮吸收似乎是一个较不重要的暴露途径。在人类中,吸入四氯乙烯通常在暴露后几小时内,吸入空气和血液之间达到一种伪平衡,尽管个体间在吸收行为上可能存在很大差异。在动物口服给药后,血液中四氯乙烯浓度通常在15-30分钟内达到峰值,系统生物利用度通常大于80%;一旦被吸收,四氯乙烯就会迅速分布到全身,富血供的组织在几分钟内与血液达到伪平衡。
Tetrachloroethylene is a volatile, lipophilic small molecule that is rapidly and extensively absorbed after inhalation and oral exposure. It can also be rapidly absorbed through the skin, but dermal absorption appears to be a less important route of exposure. In humans, inhalation exposure to tetrachloroethylene typically results, within a few hours of exposure, in a pseudoequilibrium between inspired air and blood although there can be substantial interindividual differences in absorption behavior. After oral dosing in animals, peak blood tetrachloroethylene concentrations are typically reached within 15-30 min, and systemic bioavailability is typically greater than 80%; once absorbed, tetrachloroethylene is rapidly distributed throughout the body, and well-perfused tissues reach a pseudoequilibrium with blood within a few minutes.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
由于它的脂溶性,四氯乙烯在脂肪组织中的浓度最高。在人体中,脂肪与血液的浓度比估计高达90:1。在肝脏和大脑中也观察到相对较高的浓度。基于动物研究和有限的人类数据,四氯乙烯在大脑中的浓度是血液浓度的4-8倍。
Because of its lipophilicity, the highest concentrations of tetrachloroethylene are found in adipose tissue. In humans, the fat-to-blood concentration ratio has been estimated to be as high as 90:1. Relatively high concentrations are also observed in the liver and brain. On the basis of animal studies and sparse human data, the brain concentration of tetrachloroethylene is 4-8 times the blood concentration.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • TSCA:
    Yes
  • 危险等级:
    6.1
  • 立即威胁生命和健康浓度:
    150 ppm
  • 危险品标志:
    Xn
  • 安全说明:
    S16,S23,S24,S36/37,S45,S61,S7
  • 危险类别码:
    R51/53,R40
  • WGK Germany:
    3
  • 海关编码:
    2903230000
  • 危险品运输编号:
    UN 1897 6.1/PG 3
  • 危险类别:
    6.1
  • RTECS号:
    KX3850000
  • 包装等级:
    III
  • 危险标志:
    GHS07,GHS08,GHS09
  • 危险性描述:
    H315,H317,H319,H336,H351,H411
  • 危险性防范说明:
    P273,P280,P304 + P340 + P312,P333 + P313,P337 + P313,P391
  • 储存条件:
    储存注意事项: - 储存在阴凉、通风良好的库房中。 - 远离火源和热源。 - 包装需密封,避免与空气接触。 - 应与碱类、活性金属粉末、碱金属及食用化学品分开存放,严禁混储。 - 配备相应种类和数量的消防器材。 - 储存区域应配备泄漏应急处理设备和适当的收容材料。

SDS

SDS:b0d9af1cf530e04b87b11250f15dabf5
查看
国标编号: 61580
CAS: 127-18-4
中文名称: 四氯乙烯
英文名称: Tetrachloroethylene
别 名: 全氯乙烯
分子式: C 2 Cl 4 ;CCl 2 CCl 2
分子量: 165.82
熔 点: -22.2℃ 沸点:121.2?
密 度: 相对密度(水=1)1.63;
蒸汽压: 2.11kPa/20℃
溶解性: 不溶于水,可混溶于乙醇、乙醚等多数有机溶剂
稳定性: 稳定
外观与性状: 无色液体,有氯仿样气味
危险标记: 15(有害品,远离食品)
用 途: 用作溶剂

2、对环境的影响
一、健康危害
侵入途径:吸入、食入、经皮吸收。
健康危害:本品有刺激和麻醉作用。吸入急性中毒者有上呼吸道刺激症状、流泪、流涎。随之出现头晕、头痛、恶心、呕吐、腹痛、视力模糊、四肢麻木,甚至出现兴奋不安、抽搐乃至昏迷,可致死。慢性中互者有乏力、眩晕、恶心、酩酊感等。可有肝损害。皮肤反复接触,可致皮炎和湿疹。
当直接接触时,四氯乙烯经皮肤或在吸入之后经肺而被吸收。人体内该化学物质的量随着接触水平和接触期间体力活动的增加而增加。它在人和动物的脂肪组织中蓄积到某一有限程度。人和动物都能使之代谢,主要以三氯乙酸形式,有时也以2,2,2-三氯乙醇的形式。所有物种,代谢能力都是有限的。但是,代谢程度随物种不同而异。对于人,大部分四氯乙烯以肺原样排出。经血液和呼吸对四氯乙烯的排出都很慢,但其排出量则随着接触水平的增高而增加。因此,可将该化合物在血液和呼吸中的浓度用于评估人的接触水平。
二、毒理学资料及环境行为
毒性:属中等毒类。
急性毒性:LD 50 3005mg/kg(大鼠经口);LC 50 50427mg/m 3 4小时(大鼠吸入);人吸入13.6g/m 3 ,数分钟内轻度麻醉;人吸入0.7~0.8g/m 3 ,喉部轻度刺激和干燥感;人吸入0.5~0.54g/m 3 ,轻度眼刺激和烧灼感,数分钟适应;人吸入0.34g/m 3 ,可嗅到气味。
刺激性:家兔经眼:500mg(24小时),轻度刺激。家兔经皮:4mg,轻度刺激。
致突变性:微生物致突变:鼠伤寒沙门氏菌50ul/皿/微粒体致突变:鼠伤寒沙门氏菌200ul/皿。
生殖毒性:大鼠吸入最低中毒(TCL 0 ):1000ppm(24小时,孕后1~22天用药),有胚胎毒性。小鼠吸入最低中毒(TCL 0 ):300ppm(7小时,孕后6~15天用药),有胚胎毒性。
致癌性:IARC致癌性评论:动物为可疑性反应。
转归:释放到周围大气中的大部分四氯乙烯,由于阳光作用而分解,形成象氯化氢、三氯乙酸和二氧化碳之类的产物。地表水中的四氯乙烯迅速蒸发,在水中几乎不发生降解。该化合物在地下水中是稳定的,这正是作出由于工业溢漏和废物堆积造成地下水污染发生率增加这种考虑的原因。
危险特性:一般不会燃烧,但长时间暴露在明火及高温下仍能燃烧。受高热分解产生有毒的腐蚀性气体。与活性金属粉末(如镁、铝等)能发生反应,引起分解。若遇高热可发生剧烈分解,引起容器破裂或爆炸事故。
燃烧(分解)产物:氯化氢、光气。 3、现场应急监测方法
便携式气相色谱法;水质检测管法;气体检测管法
气体速测管(德国德尔格公司产品) 4、实验室监测方法
监测方法 来源 类别
顶空气相色谱法 GB/T17130-1997 水质
无泵型采样器气相色谱法 WS/T156-1999 作业场所空气
吡啶-碱比色法;
气相色谱法
《空气中有害物质的测定方法》(第二版),杭士平主编 空气
气相色谱法 《固体废弃物试验与分析评价手册》中国环境监测总站等译 固体废弃物
色谱/质谱法 美国EPA524.2方法 水质
5、环境标准
前苏联 车间空气中有害物质的最高容许浓度 10mg/m 3
前苏联(1978) 环境空气中最高容许浓度 0.06mg/m 3 (日均值)
中国(GHZB1-1999) 地表水环境质量标准(I、II、III类水域) 0.005mg/L
中国(待颁布) 饮用水源中有害物质的最高容许浓度 0.04mg/L
中国(GB8978-1996) 污水综合排放标准 一级:0.1mg/L
二级:0.2mg/L
三级:0.5mg/L
日本(1993) 环境标准 地面水:0.01mg/L
废水:0.1mg/L
土壤浸出液:0.01mg/L
嗅觉阈浓度 50ppm
6、应急处理处置方法
一、泄漏处置
疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,在确保安全情况下堵漏。收修配转移回收。无法收集的可用多硫化钙或过量的硫磺处理。
废弃物处置方法:建议用焚烧法处理。废弃物和其它燃料混合焚烧,燃烧要充分,防止生成光气。焚烧炉排出的卤化氢通过酸洗涤器除去。此外,从废料中回收四氯乙烯,再循环使用。
二、防护措施
工程控制:生产过程密闭,加强通风。
呼吸系统防护:空气中浓度超标时,应该佩戴防毒面具。紧急事态抢救或撤离时,佩戴自给式呼吸
器。
眼睛防护:戴化学安全防护眼镜。
防护服:穿防静电工作服。
手防护:必要时戴防化学品手套。
其它:工作现场禁止吸烟、进食和饮水。工作后,淋浴更衣。单独存放被毒物污染的衣服,洗后再用。注意个人清洁卫生。
三、急救措施
皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗。
眼睛接触:立即翻开上下眼睑,用流动清水或生理盐水冲洗至少15分钟。就医。
吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。保暖并休息。呼吸困难时给输氧。呼吸停止时,立即进行人工呼吸。就医。
食入:误服者立即漱口,饮足量温水,催吐,就医。
灭火方法:雾状水、泡沫、二氧化碳、干粉、砂土。





制备方法与用途

四氯乙烯是一种重要的有机溶剂,具有广泛的应用领域。以下是关于四氯乙烯的一些重要信息:

化学性质:
  • 外观和气味:无色透明液体,具有类似乙醚的气味。
  • 溶解性:能溶解多种物质(如橡胶、树脂、脂肪、三氯化铝、硫、碘、氯化汞),与乙醇、乙醚、氯仿、苯混溶。可溶于约10000倍体积的水中。
用途:
  1. 有机溶剂:用于溶解各种物质。
  2. 干洗剂:广泛应用于衣物干洗行业。
  3. 金属脱脂溶剂:用于清洗金属表面。
  4. 驱肠虫药:可用于杀灭肠道寄生虫。
  5. 油脂萃取剂:用于从油中提取其他成分。
  6. 烟幕剂和灭火剂:作为消防设备中的重要组成部分。
生产方法:
  1. 乙烯法

    • 乙烯直接氯化生成1,2-二氯乙烷,进一步氯化生成三氯乙烯和四氯乙烯。
  2. 烃类氧化法

    • 将含甲烷、乙烷、丙烷等的混合物进行氯化热解。
  3. 乙炔法

    • 乙炔与氯反应生成1,1,2,2-四氯乙烷,再经处理得到四氯乙烯(此方法因成本较高而较少采用)。
物理化学性质:
  • 沸点:87.05°C。
  • 闪点:34.67°C。
  • 蒸气密度:比空气大1.9倍。
安全和健康风险:
  • 四氯乙烯有毒,长期接触可能导致肝、肾功能损害等健康问题。
  • 吸入其蒸汽会引起呼吸道刺激及头晕等症状。
  • 应避免与皮肤直接接触,并采取适当的防护措施。
环境影响:

四氯乙烯分解时会释放出有害气体(如光气),因此在处理过程中需特别注意废气的回收和净化。

储存运输要求:
  • 存放在阴凉、干燥通风良好处。
  • 远离火源和氧化剂等危险品。
  • 采用铁桶包装并标示“有毒品”。

总之,四氯乙烯作为一种重要的工业原料,在使用时必须严格遵守安全操作规程以保障工作人员的安全及环境的保护。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    四氯乙烯氧化亚氮 作用下, 生成 3,3,4,4-tetrachloro-2-pentachloroethyl-[1,2]oxazetidine
    参考文献:
    名称:
    三氯乙氧基和四氯乙氧基上的一氧化氮行动†
    摘要:
    一氧化氮对三氯和四氯乙稀行动。
    DOI:
    10.1002/hlca.19760590120
  • 作为产物:
    描述:
    五氯乙烷 291.65 ℃ 、2.8 kPa 条件下, 生成 四氯乙烯
    参考文献:
    名称:
    五氯乙烷热解中壁反应的机理模型
    摘要:
    热脱氯化氢 C2HCl5 C2Cl4 + HCl 已在 565 至 645 K 的静态系统中进行了研究,压力范围为 5 至 21 托。反应过程通过测量调节后的石英反应容器中的压力升高并通过气相色谱分析产物来跟踪。观察到的流动系统的实验结果和文献数据可以用涉及非均相链起始和终止步骤的自由基反应模型进行定量解释。已推导出 Cl、Cl2 和 C2HCl5 在覆盖有热解碳膜的反应器壁上的反应和吸附的 Cl 原子的反应的速率常数。© 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 322–330, 2002
    DOI:
    10.1002/kin.10054
  • 作为试剂:
    参考文献:
    名称:
    A Fabric Denuder for Sampling Semi-Volatile Species
    摘要:
    A new style of diffusion denuder has been evaluated specifically for sampling HNO3. A coated fabric is used as the denuder substrate, which can be loaded directly into a standard filter holder. This approach allows direct denuder sampling with no additional capital costs over filter sampling and simplifies the coating and extraction process.Potential denuder materials and coatings were evaluated in the laboratory to test the removal efficiency. NaCl coatings were used to assess more than 20 materials for HNO3 collection efficiency. Particle retention, which would cause a denuder to have a positive bias for gas concentration measurements, was evaluated by ambient air sampling using particulate sulfate as the reference aerosol. Particle retention varied from 0 to 15%, depending on the denuder material tested. The best performing material showed an average particle retention of less than 3%.Denuder efficiency of four fabric materials was tested under ambient conditions to determine removal efficiency. The fabric denuder method was compared with a long path-length Fourier transform infrared (FTIR) spectrometer, a tunable diode laser absorption spectrometer (TDLAS), and a denuder difference sampler to independently measure HNO3. HNO3 collection efficiency was typically 90% for the denuders, whether coated with NaCl or not. For 10-L/min sampling rates with the fabric denuder, the square of the correlation coefficient with the FTIR spectrometer was 0.73, compared to 0.24 with the TDLAS.
    DOI:
    10.1080/10473289.2000.10464134
点击查看最新优质反应信息

文献信息

  • Novel processes for the preparation of adenosine compounds and intermediates thereto
    申请人:——
    公开号:US20030069423A1
    公开(公告)日:2003-04-10
    Novel processes for the preparation of adenosine compounds and intermediates thereto. The adenosine compounds prepared by the present processes may be useful as cardiovascular agents, more particularly as antihypertensive and anti-ischemic agents, as cardioprotective agents which ameliorate ischemic injury or myocardial infarct size consequent to myocardial ischemia, and as an antilipolytic agents which reduce plasma lipid levels, serum triglyceride levels, and plasma cholesterol levels. The present processes may offer improved yields, purity, ease of preparation and/or isolation of intermediates and final product, and more industrially useful reaction conditions and workability.
    新型的制备腺苷化合物及其中间体的方法。通过本方法制备的腺苷化合物可能作为心血管药物有用,更具体地作为降压和抗缺血药物,作为改善缺血性损伤或心肌梗死大小的心脏保护剂,以及作为降脂剂,可降低血浆脂质水平、血清甘油三酯水平和血浆胆固醇水平。本方法可能提供改善产率、纯度、制备和/或中间体和最终产品的分离的便利性,以及更具工业应用的反应条件和可操作性。
  • [EN] SUBSTITUTED QUINAZOLINES AS FUNGICIDES<br/>[FR] QUINAZOLINES SUBSTITUÉES, UTILISÉES EN TANT QUE FONGICIDES
    申请人:SYNGENTA PARTICIPATIONS AG
    公开号:WO2010136475A1
    公开(公告)日:2010-12-02
    The present invention relates to a compound of formula (I) wherein wherein the substituents have the definitions as defined in claim 1or a salt or a N-oxide thereof, their use and methods for the control and/or prevention of microbial infection, particularly fungal infection, in plants and to processes for the preparation of these compounds.
    本发明涉及一种具有如下式(I)的化合物,其中取代基具有权利要求1中定义的定义,或其盐或N-氧化物,它们的用途以及用于控制和/或预防植物中微生物感染,特别是真菌感染的方法,以及制备这些化合物的方法。
  • [EN] CALPAIN MODULATORS AND THERAPEUTIC USES THEREOF<br/>[FR] MODULATEURS DE CALPAÏNE ET LEURS UTILISATIONS THÉRAPEUTIQUES
    申请人:BLADE THERAPEUTICS INC
    公开号:WO2019190885A1
    公开(公告)日:2019-10-03
    Small molecule calpain modulator compounds, including their pharmaceutically acceptable salts, can be included in pharmaceutical compositions. The compounds can be useful in inhibiting calpain, or competitive binding with calpastatin, by contacting them with CAPN1, CAPN2, and/or CAPN9 enzymes residing inside a subject. The compounds and composition can also be administered to a subject in order to treat a fibrotic disease or a secondary disease state or condition of a fibrotic disease.
    小分子钙蛋白酶调节剂化合物,包括其药用可接受的盐,可以包含在药物组合物中。这些化合物可以通过与主体内的CAPN1、CAPN2和/或CAPN9酶接触来抑制钙蛋白酶,或与钙蛋白酶抑制剂竞争性结合。这些化合物和组合物也可以被用于治疗纤维化疾病或纤维化疾病的继发疾病状态或病情。
  • [EN] MICROBIOCIDAL OXADIAZOLE DERIVATIVES<br/>[FR] DÉRIVÉS D'OXADIAZOLE MICROBIOCIDES
    申请人:SYNGENTA PARTICIPATIONS AG
    公开号:WO2017157962A1
    公开(公告)日:2017-09-21
    Compounds of the formula (I) wherein the substituents are as defined in claim 1, useful as a pesticides, especially fungicides.
    式(I)的化合物,其中取代基如权利要求1所定义,作为杀虫剂特别是杀菌剂有用。
  • [EN] ANTI-CANCER AND ANTI-HIV COMPOUNDS<br/>[FR] COMPOSÉS ANTICANCÉREUX ET ANTI-VIH
    申请人:SIRENAS MARINE DISCOVERY
    公开号:WO2014123900A1
    公开(公告)日:2014-08-14
    Disclosed herein are compounds useful as anti-cancer and anti-HIV agents. Also disclosed are pharmaceutical compositions and methods of treatment. The compounds disclosed herein can be used to treat a variety of conditions, diseases and ailments such as bladder cancer, breast cancer, colon cancer, rectal cancer, endometrial cancer, kidney cancer, lung cancer, melanoma, non-Hodgkin lymphoma, glioblastoma, pancreatic cancer, prostate cancer, and thyroid cancer, and HIV related disorders.
    本文披露了作为抗癌和抗HIV药物有用的化合物。还披露了药物组合物和治疗方法。本文披露的化合物可用于治疗多种疾病和疾病,如膀胱癌、乳腺癌、结肠癌、直肠癌、子宫内膜癌、肾癌、肺癌、黑色素瘤、非霍奇金淋巴瘤、胶质母细胞瘤、胰腺癌、前列腺癌和甲状腺癌,以及HIV相关疾病。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
mass
cnmr
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台