4'-Hydroxychalcone(P-肉桂酰苯酚)存在于草药、香料和茶叶中,是一种刺甘草查尔酮。它具有多种生物活性,能够抑制TNF-α诱导的NF-κB通路激活,并激活BMP信号通路。
靶点Target | Value |
---|---|
NF-κB |
4'-Hydroxychalcone (20-40 μM,2小时) 在剂量依赖性方式下抑制TNFα(20 ng/mL,6小时)诱导的NF-kB途径激活。
4'-Hydroxychalcone (0.1-25 μM,8小时) 以剂量依赖性方式抑制蛋白酶体活性,但不影响IKK活性。
4'-Hydroxychalcone 抑制TNFα引起的IkBα降解,并阻止p50/p65核转运,从而抑制NF-kB靶基因的表达。
4'-Hydroxychalcone 影响癌细胞活力,但对非转化细胞无显著影响。
操作参数 | 值 |
---|---|
细胞系 | K562细胞、Jurkat细胞、U937细胞、PBMCs |
浓度 | 5 μM, 10 μM, 20 μM, 24 μM, 28 μM, 32 μM, 40 μM, 60 μM |
孵育时间 | 24小时 |
结果 | 影响癌细胞活力,但对非转化细胞无显著影响。 |
操作参数 | 值 |
---|---|
细胞系 | Jurkat细胞 |
浓度 | 60 μM(随后加入TNFα 20 ng/mL) |
孵育时间 | 2小时 |
结果 | 抑制TNFα引起的IkBα降解,并阻止p50/p65核转运。 |
4'-Hydroxychalcone 在小鼠中表现出抗肝损伤活性,用于对乙酰氨基酚诱导的肝脏毒性。
动物模型操作参数 | 值 |
---|---|
动物模型 | 雄性白化小鼠(5-30 g) |
剂量 | 25 mg/kg, 50 mg/kg, 100 mg/kg |
给药方式 | 口服给药,每12小时一次,4次剂量 |
结果 | 显著降低了由对乙酰氨基酚(1 g/kg)引起的死亡率。 |
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
(2E)-1-(4-甲氧基苯基)-3-苯基-2-丙烯-1-酮 | trans-4'-methoxychalcone | 22966-19-4 | C16H14O2 | 238.286 |
—— | 4'-isopropyloxy-trans-chalcone | 99259-75-3 | C18H18O2 | 266.34 |
对羟基苯乙酮 | 4-Hydroxyacetophenone | 99-93-4 | C8H8O2 | 136.15 |
—— | 4-(tetrahydropyran-2-yloxy)chalcone | 468060-22-2 | C20H20O3 | 308.377 |
对甲氧基苯乙酮 | 1-(4-methoxyphenyl)ethanone | 100-06-1 | C9H10O2 | 150.177 |
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
—— | (Z)-4'-hydroxychalcone | 102692-58-0 | C15H12O2 | 224.259 |
反式-查耳酮 | 1,3-diphenyl-propen-3-one | 614-47-1 | C15H12O | 208.26 |
—— | 4'-(2-hydroxy-ethoxy)-trans-chalcone | 36452-09-2 | C17H16O3 | 268.312 |
—— | (E)-3-phenyl-1-(4-(prop-2-yn-1-yloxy)phenyl)prop-2-en-1-one | 1196532-71-4 | C18H14O2 | 262.308 |
—— | (2E,2'E)-1,1'-((propane-1,3-diylbis(oxy))bis(4,1-phenylene))bis(3-phenylprop-2-en-1-one) | 252006-47-6 | C33H28O4 | 488.583 |
—— | (E)-1-(4-(3-bromopropyloxy)phenyl)-3-phenylprop-2-en-1-one | —— | C18H17BrO2 | 345.236 |
—— | (2E)-3-phenyl-1-[4-(3-methylbut-2-enyloxy)phenyl]propenone | —— | C20H20O2 | 292.378 |
—— | (E)-1-(4-(2-(dimethylamino)ethoxy)phenyl)-3-phenylprop-2-en-1-one | 94310-97-1 | C19H21NO2 | 295.381 |
—— | (E)-1-(4-(4-bromobutyloxy)phenyl)-3-phenylprop-2-en-1-one | 1262136-39-9 | C19H19BrO2 | 359.263 |
2-(4-肉桂基苯氧基)乙酸 | {4-[(2E)-3-phenylprop-2-enoyl]phenoxy}acetic acid | 136068-42-3 | C17H14O4 | 282.296 |
—— | (E)-1-(4-(2-(diethylamino)ethoxy)phenyl)-3-phenylprop-2-en-1-one | 25960-41-2 | C21H25NO2 | 323.435 |
—— | (E)-1-(4-(6-bromohexyloxy)phenyl)-3-phenylprop-2-en-1-one | 1262136-42-4 | C21H23BrO2 | 387.316 |
—— | (E)-1-(4-(3-(dipropylamino)propoxy)phenyl)-3-phenylprop-2-en-1-one | 114277-97-3 | C24H31NO2 | 365.516 |
—— | (E)-1-(4-(6-(dimethylamino)hexyloxy)phenyl)-3-phenylprop-2-en-1-one | 134994-58-4 | C23H29NO2 | 351.489 |
—— | (E)-1-(4-(3-(dibutylamino)propoxy)phenyl)-3-phenylprop-2-en-1-one | —— | C26H35NO2 | 393.569 |
—— | (E)-1-(4-(2-(dipropylamino)ethoxy)phenyl)-3-phenylprop-2-en-1-one | —— | C23H29NO2 | 351.489 |
—— | ethyl {4-[(2E)-3-phenylprop-2-enoyl]phenoxy}acetate | 370590-07-1 | C19H18O4 | 310.35 |
—— | (E)-1-(4-(4-(dipropylamino)butoxy)phenyl)-3-phenylprop-2-en-1-one | —— | C25H33NO2 | 379.543 |
—— | (E)-1-(4-(4-(dibutylamino)butoxy)phenyl)-3-phenylprop-2-en-1-one | —— | C27H37NO2 | 407.596 |
—— | 3-(4-hydroxyphenyl)-1-phenylprop-1-ene | 21148-30-1 | C15H14O | 210.276 |
—— | (E)-1-(4-(5-(dipropylamino)pentyloxy)phenyl)-3-phenylprop-2-en-1-one | —— | C26H35NO2 | 393.569 |
—— | (E)-1-(4-(5-(dibutylamino)pentyloxy)phenyl)-3-phenylprop-2-en-1-one | —— | C28H39NO2 | 421.623 |
—— | (E)-1-(4-(2-(dibutylamino)ethoxy)phenyl)-3-phenylprop-2-en-1-one | —— | C25H33NO2 | 379.543 |
—— | (E)-1-(4-(6-(dipropylamino)hexyloxy)phenyl)-3-phenylprop-2-en-1-one | —— | C27H37NO2 | 407.596 |
—— | (E)-1-(4-((tert-butyldimethylsilyl)oxy)phenyl)-3-phenylprop-2-en-1-one | —— | C21H26O2Si | 338.522 |
对羟基苯乙酮 | 4-Hydroxyacetophenone | 99-93-4 | C8H8O2 | 136.15 |
—— | 4-(4-((E)-3-Phenylprop-2-enoyl)phenoxy)azetidin-2-one | 119005-18-4 | C18H15NO3 | 293.3 |
—— | ethyl 2-methyl-2-{4-[(2E)-3-phenylprop-2-enoyl]phenoxy}propanoate | 1609180-21-3 | C21H22O4 | 338.403 |
—— | (E)-1-[3-[(dibenzylamino)methyl]-4-hydroxyphenyl]-3-phenylprop-2-en-1-one | 1137686-75-9 | C30H27NO2 | 433.55 |
—— | ethyl 2-methyl-2-[4-(2-{4-[(2E)-3-phenylprop-2-enoyl]phenoxy}ethyl)phenoxy]propanoate | 1415608-82-0 | C29H30O5 | 458.554 |
—— | ethyl 2-methyl-2-[4-(3-{4-[(2E)-3-phenylprop-2-enoyl]phenoxy}propyl)phenoxy]propanoate | 1415608-83-1 | C30H32O5 | 472.581 |
Chalcones represent a class of small drug/druglike molecules with different and multitarget biological activities. Small multi-target drugs have attracted considerable interest in the last decade due their advantages in the treatment of complex and multifactorial diseases, since “one drug-one target” therapies have failed in many cases to demonstrate clinical efficacy. In this context, we designed and synthesized potential new small multi-target agents with lipoxygenase (LOX), acetyl cholinesterase (AChE) and lipid peroxidation inhibitory activities, as well as antioxidant activity based on 2-/4- hydroxy-chalcones and the bis-etherified bis-chalcone skeleton. Furthermore, the synthesized molecules were evaluated for their cytotoxicity. Simple chalcone b4 presents significant inhibitory activity against the 15-human LOX with an IC50 value 9.5 µM, interesting anti-AChE activity, and anti-lipid peroxidation behavior. Bis-etherified chalcone c12 is the most potent inhibitor of AChE within the bis-etherified bis-chalcones followed by c11. Bis-chalcones c11 and c12 were found to combine anti-LOX, anti-AchE, and anti-lipid peroxidation activities. It seems that the anti-lipid peroxidation activity supports the anti-LOX activity for the significantly active bis-chalcones. Our circular dichroism (CD) study identified two structures capable of interfering with the aggregation process of Aβ. Compounds c2 and c4 display additional protective actions against Alzheimer’s disease (AD) and add to the pleiotropic profile of the chalcone derivatives. Predicted results indicate that the majority of the compounds with the exception of c11 (144 Å) can cross the Blood Brain Barrier (BBB) and act in CNS. The results led us to propose new leads and to conclude that the presence of a double enone group supports better biological activities.