摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3,4,6-三邻苄基半乳醛 | 80040-79-5

中文名称
3,4,6-三邻苄基半乳醛
中文别名
三-O-苄基-D-半乳醛;3,4,6-O-三苄基-D-半乳糖烯
英文名称
3,4,6-tri-O-benzyl-D-galactal
英文别名
(2R,3R,4R)-3,4-bis(benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyran;tri-O-benzyl galactal;tri-O-benzyl-D-galactal;3,4,6-tri-O-benzyl galactal;(2R,3R,4R)-3,4-bis(phenylmethoxy)-2-(phenylmethoxymethyl)-3,4-dihydro-2H-pyran
3,4,6-三邻苄基半乳醛化学式
CAS
80040-79-5
化学式
C27H28O4
mdl
——
分子量
416.517
InChiKey
MXYLLYBWXIUMIT-ZONZVBGPSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    57-58 °C(lit.)
  • 沸点:
    544.9±50.0 °C(Predicted)
  • 密度:
    1.16±0.1 g/cm3(Predicted)
  • 闪点:
    >230 °F
  • 溶解度:
    溶于二氯甲烷或氯仿,
  • 稳定性/保质期:

    在常温常压下稳定,应远离氧化剂。

计算性质

  • 辛醇/水分配系数(LogP):
    4.5
  • 重原子数:
    31
  • 可旋转键数:
    10
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.26
  • 拓扑面积:
    36.9
  • 氢给体数:
    0
  • 氢受体数:
    4

安全信息

  • WGK Germany:
    3
  • 安全说明:
    S24/25
  • 危险性防范说明:
    P261,P305+P351+P338
  • 危险性描述:
    H302,H315,H319,H335
  • 储存条件:
    存放在密封容器中,并放置在阴凉、干燥处。建议冷藏保存。

SDS

SDS:c2ce8343815199768582877b3d2fcab0
查看

模块 1. 化学
1.1 产品标识符
: 三-O-苄基-D-半乳醛
产品名称
1.2 鉴别的其他方法
无数据资料
1.3 有关的确定了的物质或混合物的用途和建议不适合的用途
仅用于研发。不作为药品、家庭或其它用途。

模块 2. 危险性概述
2.1 GHS-分类
根据全球协调系统(GHS)的规定,不是危险物质或混合物。
当心 - 物质尚未完全测试。
2.3 其它危害物 - 无

模块 3. 成分/组成信息
3.1 物 质
: C27H28O4
分子式
: 416.51 g/mol
分子量


模块 4. 急救措施
4.1 必要的急救措施描述
吸入
如果吸入,请将患者移到新鲜空气处。 如呼吸停止,进行人工呼吸。
皮肤接触
用肥皂和大量的冲洗。
眼睛接触
冲洗眼睛作为预防措施。
食入
切勿给失去知觉者通过口喂任何东西。 用漱口。
4.2 主要症状和影响,急性和迟发效应
4.3 及时的医疗处理和所需的特殊处理的说明和指示
无数据资料

模块 5. 消防措施
5.1 灭火介质
灭火方法及灭火剂
雾,抗乙醇泡沫,干粉或二氧化碳灭火。
5.2 源于此物质或混合物的特别的危害
碳氧化物
5.3 给消防员的建议
如必要的话,戴自给式呼吸器去救火。
5.4 进一步信息
无数据资料

模块 6. 泄露应急处理
6.1 作业人员防护措施、防护装备和应急处置程序
避免粉尘生成。 避免吸入蒸气、烟雾或气体。
6.2 环境保护措施
不要让产品进入下道。
6.3 泄漏化学品的收容、清除方法及所使用的处置材料
扫掉和铲掉。 放入合适的封闭的容器中待处理。
6.4 参考其他部分
丢弃处理请参阅第13节。

模块 7. 操作处置与储存
7.1 安全操作的注意事项
在有粉尘生成的地方,提供合适的排风设备。一般性的防火保护措施。
7.2 安全储存的条件,包括任何不兼容性
贮存在阴凉处。 使容器保持密闭,储存在干燥通风处。
建议的贮存温度: -20 °C
7.3 特定用途
无数据资料

模块 8. 接触控制和个体防护
8.1 容许浓度
最高容许浓度
没有已知的国家规定的暴露极限。
8.2 暴露控制
适当的技术控制
常规的工业卫生操作。
个体防护设备
眼/面保护
请使用经官方标准如NIOSH (美国) 或 EN 166(欧盟) 检测与批准的设备防护眼部。
皮肤保护
戴手套取 手套在使用前必须受检查。
请使用合适的方法脱除手套(不要接触手套外部表面),避免任何皮肤部位接触此产品.
使用后请将被污染过的手套根据相关法律法规和有效的实验室规章程序谨慎处理. 请清洗并吹干双手
所选择的保护手套必须符合EU的89/686/EEC规定和从它衍生出来的EN 376标准。
身体保护
根据危险物质的类型,浓度和量,以及特定的工作场所选择身体保护措施。,
防护设备的类型必须根据特定工作场所中的危险物的浓度和数量来选择。
呼吸系统防护
不需要保护呼吸。如需防护粉尘损害,请使用N95型(US)或P1型(EN 143)防尘面具。
呼吸器使用经过测试并通过政府标准如NIOSH(US)或CEN(EU)的呼吸器和零件。

模块 9. 理化特性
9.1 基本的理化特性的信息
a) 外观与性状
形状: 固体
b) 气味
无数据资料
c) 气味阈值
无数据资料
d) pH值
无数据资料
e) 熔点/凝固点
熔点/凝固点: 48 - 54 °C
f) 沸点、初沸点和沸程
无数据资料
g) 闪点
> 113.00 °C - 闭杯
h) 蒸发速率
无数据资料
i) 易燃性(固体,气体)
无数据资料
j) 高的/低的燃烧性或爆炸性限度 无数据资料
k) 蒸气压
无数据资料
l) 蒸汽密度
无数据资料
m) 密度/相对密度
无数据资料
n) 溶性
无数据资料
o) n-辛醇/分配系数
无数据资料
p) 自燃温度
无数据资料
q) 分解温度
无数据资料
r) 粘度
无数据资料

模块 10. 稳定性和反应活性
10.1 反应性
无数据资料
10.2 稳定性
无数据资料
10.3 危险反应
无数据资料
10.4 应避免的条件
无数据资料
10.5 不相容的物质
强氧化剂
10.6 危险的分解产物
其它分解产物 - 无数据资料

模块 11. 毒理学资料
11.1 毒理学影响的信息
急性毒性
无数据资料
皮肤刺激或腐蚀
无数据资料
眼睛刺激或腐蚀
无数据资料
呼吸道或皮肤过敏
无数据资料
生殖细胞致突变性
无数据资料
致癌性
IARC:
此产品中没有大于或等于 0。1%含量的组分被 IARC鉴别为可能的或肯定的人类致癌物。
生殖毒性
无数据资料
特异性靶器官系统毒性(一次接触)
无数据资料
特异性靶器官系统毒性(反复接触)
无数据资料
吸入危险
无数据资料
潜在的健康影响
吸入 吸入可能有害。 可能引起呼吸道刺激。
摄入 如服入是有害的。
皮肤 通过皮肤吸收可能有害。 可能引起皮肤刺激。
眼睛 可能引起眼睛刺激。
附加说明
化学物质毒性作用登记: 无数据资料

模块 12. 生态学资料
12.1 生态毒性
无数据资料
12.2 持久性和降解性
无数据资料
12.3 潜在的生物累积性
无数据资料
12.4 土壤中的迁移性
无数据资料
12.5 PBT 和 vPvB的结果评价
无数据资料
12.6 其它不良影响
无数据资料

模块 13. 废弃处置
13.1 废物处理方法
产品
将剩余的和不可回收的溶液交给有许可证的公司处理。
受污染的容器和包装
按未用产品处置。

模块 14. 运输信息
14.1 联合国危险货物编号
欧洲陆运危规: - 国际海运危规: - 国际空运危规: -
14.2 联合国运输名称
欧洲陆运危规: 非危险货物
国际海运危规: 非危险货物
国际空运危规: 非危险货物
14.3 运输危险类别
欧洲陆运危规: - 国际海运危规: - 国际空运危规: -
14.4 包裹组
欧洲陆运危规: - 国际海运危规: - 国际空运危规: -
14.5 环境危险
欧洲陆运危规: 否 国际海运危规 国际空运危规: 否
海洋污染物(是/否): 否
14.6 对使用者的特别提醒
无数据资料


模块 15 - 法规信息
N/A


模块16 - 其他信息
N/A

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2
    • 3

反应信息

  • 作为反应物:
    参考文献:
    名称:
    由C-2甲酰基缩醛合成二羟甲基二羟基吡咯烷和甜菊胺类似物
    摘要:
    已经描述了通过常见的二羰基中间体由C-2甲酰基d-糖合成二羟甲基二羟基吡咯烷。如此获得的吡咯烷已被进一步用于合成一些甜菊胺类似物。已对新合成的分子对6种市售酶的糖苷酶抑制作用进行了评估,发现它们在微摩尔范围内具有活性,其中一种甜菊糖类似物表现出对β-甘露糖苷酶(螺旋藻)的良好且选择性的抑制作用。
    DOI:
    10.1021/jo401613v
  • 作为产物:
    参考文献:
    名称:
    Phosphine-Free Suzuki–Miyaura Cross-Coupling in Aqueous Media Enables Access to 2-C-Aryl-Glycosides
    摘要:
    A general strategy for the synthesis of 2-aryl-glycals and their elaboration to 2-C-aryl-alpha-glycosides and 1,5-anhydro-2-C-ary1-2-deoxy alditols are described. The use of reliable, efficient phosphine-free Suzuki-Miyaura cross-coupling of 2-iodoglycals in aqueous media as a key step proceeds with complete regioselectivity at C-2 and enables access to 2-aryl-glycals with different configurations in excellent yields.
    DOI:
    10.1021/ol3003139
  • 作为试剂:
    描述:
    2,2,6,6-四甲基哌啶氧化物3-溴丙腈甲基2,3,4-三-O-苄基-α-D-吡喃葡萄糖苷3,4,6-三邻苄基半乳醛四丁基三氟甲磺酸铵 作用下, 生成 3-[(2,2,6,6-tetramethyl-1-piperidinyl)oxy]propanenitrile
    参考文献:
    名称:
    来自Glycals的立体选择性电-2-脱氧糖基化。
    摘要:
    我们报道了一种来自糖基的新型且高度立体选择性的电-2-脱氧糖基化反应。该方法具有出色的立体选择性,范围和功能组公差。该方法也可以用于多种天然产物和药物的改性。此外,还实现了糖基鬼臼毒素的可扩展合成和通过迭代电糖基化的单锅三糖合成。
    DOI:
    10.1002/anie.202006115
点击查看最新优质反应信息

文献信息

  • Rhodium-Catalyzed Denitrogenative Transannulation of <i>N</i>-Sulfonyl-1,2,3-triazoles with Glycals Giving Pyrroline-Fused <i>N</i>-Glycosides
    作者:Jingjing Bi、Qiang Tan、Hao Wu、Qingfeng Liu、Guisheng Zhang
    DOI:10.1021/acs.orglett.1c02141
    日期:2021.8.20
    with exclusive regioselectivity and stereoselectivity. Functional application of such a resultant product by oxidative addition and epoxidation is also explored. Notably, the treatment of a pyrroline-fused N-glycoside (3a) with TMSOTf efficiently leads to an interesting unexpected C-nucleoside (9) via a TMSOTf-inducing ring opening/acetyl migration/ring closing reaction sequence.
    这里描述的是通过催化的N-磺酰基-1,2,3-三唑与聚糖的脱氮环化反应选择性合成 2,3-二氢吡咯稠合的N-糖苷。一系列吡咯啉稠合的N-糖苷以中等至极好的收率提供,具有独特的区域选择性和立体选择性。还探索了这种通过氧化加成和环氧化得到的产物的功能应用。值得注意的是,通过 TMSOTf 诱导的开环/乙酰基迁移/闭环反应序列,用 TMSOTf处理吡咯啉稠合的N-糖苷(3a)有效地导致有趣的意外C-核苷(9)。
  • A New Method for the Stereoselective Synthesis of α- and β-Glycosylamines Using the Burgess Reagent
    作者:K. C. Nicolaou、Scott A. Snyder、Annie Z. Nalbandian、Deborah A. Longbottom
    DOI:10.1021/ja049293c
    日期:2004.5.1
    Although glycosylamines constitute an important group of carbohydrates from the standpoint of biology and medicine, methods for their synthesis typically lack substrate generality and/or result in variable stereoselectivity, especially in complex contexts. In this communication, we report an operationally simple method for the synthesis of both α- and β-glycosylamines using the Burgess reagent that overcomes
    尽管从生物学和医学的角度来看,糖基胺构成了一组重要的碳水化合物,但它们的合成方法通常缺乏底物的通用性和/或导致可变的立体选择性,尤其是在复杂的环境中。在这篇通讯中,我们报告了一种使用 Burgess 试剂合成 α- 和 β- 糖基胺的操作简单的方法,该方法以最少的合成步骤克服了许多这些限制。
  • New Uses for the Burgess Reagent in Chemical Synthesis: Methods for the Facile and Stereoselective Formation of Sulfamidates, Glycosylamines, and Sulfamides
    作者:K. C. Nicolaou、Scott A. Snyder、Deborah A. Longbottom、Annie Z. Nalbandian、Xianhai Huang
    DOI:10.1002/chem.200400503
    日期:2004.11.19
    Although the Burgess reagent (methoxycarbonylsulfamoyltriethylammonium hydroxide, inner salt) has found significant use in chemical synthesis as a dehydrating agent, almost no work has been directed towards its potential in other synthetic applications. As this article will detail, we have found that the Burgess reagent is remarkably effective at accomplishing a number of non-dehydrative synthetic
    尽管Burgess试剂(甲氧基羰基磺酰基三乙氢氧化物,内盐)已发现在化学合成中作为脱剂具有重要用途,但几乎没有工作针对其在其他合成应用中的潜力。正如本文将要详细介绍的那样,我们发现,将Burgess试剂应用于适当的底物上,例如从1,2-二醇或环氧醇,α-和C-形成氨基磺酸盐时,在完成许多非脱合成任务方面非常有效。来自碳水化合物的β-糖胺和来自1,2-基醇的环状磺酰胺 除了描述这些新反应歧管的功能之外,我们还描述了一组替代的Burgess型试剂的构造,这些试剂进一步扩展了这些新反应的范围。
  • Fluorinated Glycosyl Amino Acids for Mucin-Like Glycopeptide Antigen Analogues
    作者:Sarah Wagner、Christian Mersch、Anja Hoffmann-Röder
    DOI:10.1002/chem.200903294
    日期:2010.6.25
    development of immunotherapy against cancer. Mucin‐type glycopeptides have been successfully investigated as molecularly defined vaccine prototypes for triggering humoral immunity but are susceptible to rapid in vivo degradation. As a potential means to enhance the bioavailabilities of the antigenic structures, hydrolysis‐resistant carbohydrate analogues with fluorine substituents at positions C6, C2′ and
    蛋白糖蛋白在上皮肿瘤细胞上的异常糖基化概况代表了针对癌症的免疫疗法发展的有吸引力的靶结构。粘蛋白型糖肽已作为分子定义的疫苗原型成功进行了研究,可触发体液免疫,但易于在体内迅速降解。作为增强抗原结构生物利用度的潜在手段,合成了在位置C6,C2'和C6'具有取代基的耐碳水化合物类似物,并将其掺入粘蛋白MUC1的串联重复序列中。由此产生的伪糖肽可用于阐明化学修饰的抗体决定簇对代谢和免疫学特性的影响。
  • Oligosaccharide Synthesis with Glycosyl Phosphate and Dithiophosphate Triesters as Glycosylating Agents
    作者:Obadiah J. Plante、Emma R. Palmacci、Rodrigo B. Andrade、Peter H. Seeberger
    DOI:10.1021/ja016227r
    日期:2001.10.1
    Described is an efficient one-pot synthesis of alpha- and beta-glycosyl phosphate and dithiophosphate triesters from glycals via 1,2-anhydrosugars. Glycosyl phosphates function as versatile glycosylating agents for the synthesis of beta-glucosidic, beta-galactosidic, alpha-fucosidic, alpha-mannosidic, beta-glucuronic acid, and beta-glucosamine linkages upon activation with trimethylsilyl trifluoromethanesulfonate
    描述了通过 1,2-脱糖从糖基中高效地一锅合成α-和β-糖基磷酸酯和二硫代磷酸三酯。糖基磷酸酯用作多功能糖基化剂,用于合成 β-葡糖苷、β-半乳糖苷、α-岩藻糖苷、α-甘露糖苷、β-葡糖醛酸和 β-葡糖胺键,在用三甲基甲硅烷三氟甲磺酸酯 (TMSOTf) 活化后。除了作为 O-糖基化的有效供体,糖基磷酸酯还可有效制备 S-糖苷和 C-糖苷。此外,还讨论了糖基磷酸酯与甲硅烷基化受体的酸催化偶联。糖基二硫代磷酸酯被合成并且也用作糖基供体。这种替代方法提供了与含有糖基的受体的兼容性,以形成 β-糖苷。为了最大限度地减少保护基团的操作,报告了使用糖基磷酸酯的正交和区域选择性糖基化策略。描述了一种正交糖基化方法,包括在糖苷受体存在下激活磷酸糖基供体,以及受体介导的区域选择性糖基化策略。此外,公开了利用α-和β-糖基磷酸酯反应性差异的独特糖基化策略。此处概述的程序为在溶液中组装复杂寡糖以及通过单
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫