摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

beta-香树脂酮醇 | 38242-02-3

中文名称
beta-香树脂酮醇
中文别名
Β-香树脂酮醇
英文名称
12-en-3β-hydroxy-olean-11-one
英文别名
3β-hydroxy-11-oxoolean-12-ene;3-β-hydroxyolean-12-en-11-one;3β-hydroxyolean-12-en-11-one;11-oxo-β-amyrin;3β-hydroxy-oleanen-(12)-one-(11);3β-Hydroxy-oleanen-(12)-on-(11);11-Oxo-beta-amyrin;(4aR,6aR,6aS,6bR,8aR,10S,12aS,14bR)-10-hydroxy-2,2,4a,6a,6b,9,9,12a-octamethyl-3,4,5,6,6a,7,8,8a,10,11,12,14b-dodecahydro-1H-picen-13-one
beta-香树脂酮醇化学式
CAS
38242-02-3
化学式
C30H48O2
mdl
——
分子量
440.71
InChiKey
UKAIYBGRLWQHDQ-KWRVYEIKSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    175 °C
  • 沸点:
    524.0±49.0 °C(Predicted)
  • 密度:
    1.05±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    8.1
  • 重原子数:
    32
  • 可旋转键数:
    0
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.9
  • 拓扑面积:
    37.3
  • 氢给体数:
    1
  • 氢受体数:
    2

制备方法与用途

生物活性

β-阿米烯农醇(11-氧代-β-阿马烯)是一种甘草根中的齐墩果型三萜,是甘草次酸的前体。它具有抗增殖和抗炎活性,并可作为合成许多三萜类化合物的骨架。

体外研究

β-阿米烯农醇(11-氧代-β-阿马烯)抑制HL60细胞生长,其IC50值为26.3 μM。在THP-1细胞中,β-阿米烯农醇(11-氧代-β-阿马烯)(100 μM)显著减少了脂多糖诱导的TNFα释放。

CYP88D6 通过体外酶活性测定被表征,并显示出催化 β-阿马烯在 C-11 的逐步两步氧化生成 β-阿米烯农醇(11-氧代-β-阿马烯)的能力。将 CYP88D6 和 β-阿马烯合成酶共表达于酵母中,也催化了 β-阿马烯的体内氧化生成 β-阿米烯农醇。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    225.三萜烯树脂醇和相关酸。第十部分β-淀粉丁烯醇
    摘要:
    DOI:
    10.1039/jr9400001198
  • 作为产物:
    参考文献:
    名称:
    Long-term glycemic control measurements in diabetic patients receiving hemodialysis
    摘要:
    Cardiovascular morbidity is increased in patients with diabetes mellitus and there is a great prevalence of diabetes and cardiovascular disease among patients with end-stage renal disease (ESRD). Control of glycemia can decrease cardiovascular and end-organ damage. Because the validity of glycemic control tests have not been rigorously studied in patients with ESRD, we evaluated the value of various measures in these patients. The overall clinical goal was to investigate whether hemoglobin A(1)C (A(1)C) accurately reflects actual glycemic control as compared with other measures in light of the importance of attaining appropriately controlled blood glucose (BG). The commonly used tests of total glycated hemoglobin (GHb) and A(1)C may be unreliable in patients with ESRD because of the presence of anemia, shortened red blood cell (RBC) survival, and assay interferences from uremia. The primary aim of this study was to assess the relationship of capillary BG measurements to A(1)C, GHb, total glycated plasma proteins (GPP), and fructosamine (Fr) in diabetic patients receiving hemodialysis. Twenty-three patients were instructed to obtain BG evaluations twice daily for 7 days by using the Elite glucometer (Bayer Corporation, Elkhart, IN). These determinations included 6 fasting, 6 preprandial, and 3 separate 2-hour postprandial levels. Blood was obtained on day 7 for measurement of A(1)C, GHb, GPP, and Fr. A(1)C was analyzed by an immunoassay, GPP and GHb were assayed by affinity high-performance liquid chromatography (HPLC), and Fr by automated nitroblue colorimetric assay. Scatter plots were generated by plotting the average BG versus A(1)C, GHb, GPP, or Fr. Linear regression was performed for each plot showing the following relationships: A(1)C = 0.0174 (BG) + 4.76 (r = 0.58; P < 0.05): GHb = 0.0371 (BG) + 3.57 (r = 0.584; P < 0.05): GPP = 0.0083 (BG) + 26.13 (r = 0.065; P = 0.77): Fr = 0.6865 (BG) + 250 (r = 0.345; P = 0.11). Despite anemia and shortened RBC lifespan in patients with ESRD, A(1)C in the range of 6% to 7% estimates glycemic control similarly to patients without severe renal impairment. A(1)C values above 7.5% may overestimate hyperglycemia in patients with ESRD. Thus, diabetic patients receiving hemodialysis may have long-term BG that are more properly controlled than previously determined, reducing their risks of the macro- and microvascular complications of diabetes mellitus. (C) 2002 by the National Kidney Foundation, Inc.
    DOI:
    10.1053/ajkd.2002.30549
点击查看最新优质反应信息

文献信息

  • Triterpene Esters: Natural Products from Dorstenia arifolia (Moraceae)
    作者:Catharina Fingolo、Thabata Santos、Marcelo Filho、Maria Kaplan
    DOI:10.3390/molecules18044247
    日期:——
    The phytochemical study of Dorstenia arifolia Lam. (Moraceae) has led to the identification of 18 triterpenes esterified by fatty acids, five triterpenes without esterification, 12 triterpenes esterified by acetic acid, together with a known furanocoumarin: α-amyrin (1), β-amyrin (2) α-amyrin acetate (3) β-amyrin acetate (4), α-amyrin octanoate (5), β-amyrin octanoate (6), α-amyrin decanoate (7), β-amyrin decanoate (8), α-amyrin dodecanoate (9), β-amyrin dodecanoate (10), α-amyrin tetradecanoate (11), β-amyrin tetradecanoate (12), α-amyrin hexadecanoate (13), β-amyrin hexadecanoate (14), glutinol (15), glutinyl acetate (16), 11-oxo-α-amyrin (17), 11-oxo-β-amyrin (18), 11-oxo-α-amyrin acetate (19), 11-oxo-β-amyrin acetate (20) 11-oxo-α-amyrin octanoate (21) 11-oxo-β-amyrin octanoate (22), 11-oxo-α-amyrin decanoate (23), 11-oxo-β-amyrin decanoate (24) 11-oxo-α-amyrin dodecanoate (25) 11-oxo-β-amyrin dodecanoate (26), ursa-9(11),12-dien-3-yl acetate (27), oleana-9(11),12-dien-3-yl acetate (28), ursa-9(11),12-dien-3-yl decanoate (29), oleana-9(11),12-dien-3-yl decanoate (30), 12,13-epoxyolean-3-yl acetate (31), 12,13-epoxyolean-9(11)en-3-yl acetate (32), taraxeryl acetate (33), lupenyl acetate (34), lanosta-8,24-dien-3-yl acetate (35) and psoralen (36). The identification of the triterpene compounds isolated as isomeric mixtures obtained from the hexane extract was based mainly in mass spectra and 13C-NMR data. The long-chain alkanoic acid esters of the triterpenes α- and β-amyrin; 11-oxo-α- and 11-oxo-β-amyrin; ursa- and olean-9(11),12-dien-3-yl; have not been reported before in the literature as constituents of the Dorstenia genus.
    对杜尔斯滕尼亚(Dorstenia arifolia Lam.)的植物化学研究已确认18种脂肪酸酯化的三萜、5种未酯化的三萜、12种醋酸酯化的三萜,以及一种已知的呋喃香豆素,包括:α-氨基醇(1)、β-氨基醇(2)、α-氨基醇醋酸酯(3)、β-氨基醇醋酸酯(4)、α-氨基醇辛酸酯(5)、β-氨基醇辛酸酯(6)、α-氨基醇癸酸酯(7)、β-氨基醇癸酸酯(8)、α-氨基醇十二酸酯(9)、β-氨基醇十二酸酯(10)、α-氨基醇十四酸酯(11)、β-氨基醇十四酸酯(12)、α-氨基醇十六酸酯(13)、β-氨基醇十六酸酯(14)、粘滑醇(15)、粘滑醇醋酸酯(16)、11-氧-α-氨基醇(17)、11-氧-β-氨基醇(18)、11-氧-α-氨基醇醋酸酯(19)、11-氧-β-氨基醇醋酸酯(20)、11-氧-α-氨基醇辛酸酯(21)、11-氧-β-氨基醇辛酸酯(22)、11-氧-α-氨基醇癸酸酯(23)、11-氧-β-氨基醇癸酸酯(24)、11-氧-α-氨基醇十二酸酯(25)、11-氧-β-氨基醇十二酸酯(26)、熊果烯-9(11),12-烯-3-醇醋酸酯(27)、橄榄烯-9(11),12-烯-3-醇醋酸酯(28)、熊果烯-9(11),12-烯-3-醇癸酸酯(29)、橄榄烯-9(11),12-烯-3-醇癸酸酯(30)、12,13-氧化倍半烯-3-醇醋酸酯(31)、12,13-氧化倍半烯-9(11)-烯-3-醇醋酸酯(32)、塔拉克塞烯醋酸酯(33)、拉乌佩烯醋酸酯(34)、平腺烯-8,24-烯-3-醇醋酸酯(35)和蕈素(36)。从己烷提取物中分离出的三萜化合物的同分异构体混合物的鉴定主要基于质谱和13C-NMR数据。三萜α-和β-氨基醇;11-氧-α-和11-氧-β-氨基醇;熊果烯和橄榄烯-9(11),12-烯-3-醇的长链烷酸酯在文献中尚未报道为杜尔斯滕尼亚属的成分。
  • Triterpene Functional Genomics in Licorice for Identification of CYP72A154 Involved in the Biosynthesis of Glycyrrhizin    
    作者:Hikaru Seki、Satoru Sawai、Kiyoshi Ohyama、Masaharu Mizutani、Toshiyuki Ohnishi、Hiroshi Sudo、Ery Odette Fukushima、Tomoyoshi Akashi、Toshio Aoki、Kazuki Saito、Toshiya Muranaka
    DOI:10.1105/tpc.110.082685
    日期:2011.11.1
    saponin derived from the underground parts of Glycyrrhiza plants (licorice), has several pharmacological activities and is also used worldwide as a natural sweetener. The biosynthesis of glycyrrhizin involves the initial cyclization of 2,3-oxidosqualene to the triterpene skeleton β-amyrin, followed by a series of oxidative reactions at positions C-11 and C-30, and glycosyl transfers to the C-3 hydroxyl
    Glycyrrhizin 是一种源自甘草植物(甘草)地下部分的三萜皂苷,具有多种药理活性,在世界范围内也用作天然甜味剂。甘草甜素的生物合成包括 2,3-氧化角鲨烯初始环化为三萜骨架 β-香树脂醇,随后在 C-11 和 C-30 位发生一系列氧化反应,糖基转移到 C-3 羟基。我们之前报道了编码 β-香树脂素 11-氧化酶 (CYP88D6) 的细胞色素 P450 单加氧酶 (P450) 基因作为甘草甜素生物合成中的初始 P450 基因的鉴定。在这项研究中,第二个相关的 P450 (CYP72A154) 被鉴定并显示负责甘草甜素途径中的 C-30 氧化。CYP72A154 在工程酵母菌株中表达,该菌株内源性产生 11-oxo-β-amyrin(β-amyrin 和甘草甜素之间可能的生物合成中间体)催化原位提供的 11-oxo-β-amyrin 在 C-30 处的三个连续氧化步骤产生甘草次酸,一种甘草甜素苷元。此外,与
  • Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin
    作者:Hikaru Seki、Kiyoshi Ohyama、Satoru Sawai、Masaharu Mizutani、Toshiyuki Ohnishi、Hiroshi Sudo、Tomoyoshi Akashi、Toshio Aoki、Kazuki Saito、Toshiya Muranaka
    DOI:10.1073/pnas.0803876105
    日期:2008.9.16

    Glycyrrhizin, a major bioactive compound derived from the underground parts of Glycyrrhiza (licorice) plants, is a triterpene saponin that possesses a wide range of pharmacological properties and is used worldwide as a natural sweetener. Because of its economic value, the biosynthesis of glycyrrhizin has received considerable attention. Glycyrrhizin is most likely derived from the triterpene β-amyrin, an initial product of the cyclization of 2,3-oxidosqualene. The subsequent steps in glycyrrhizin biosynthesis are believed to involve a series of oxidative reactions at the C-11 and C-30 positions, followed by glycosyl transfers to the C-3 hydroxyl group; however, no genes encoding relevant oxidases or glycosyltransferases have been identified. Here we report the successful identification of CYP88D6 , a cytochrome P450 monooxygenase (P450) gene, as a glycyrrhizin-biosynthetic gene, by transcript profiling-based selection from a collection of licorice expressed sequence tags (ESTs). CYP88D6 was characterized by in vitro enzymatic activity assays and shown to catalyze the sequential two-step oxidation of β-amyrin at C-11 to produce 11-oxo-β-amyrin, a possible biosynthetic intermediate between β-amyrin and glycyrrhizin. CYP88D6 coexpressed with β-amyrin synthase in yeast also catalyzed in vivo oxidation of β-amyrin to 11-oxo-β-amyrin. CYP88D6 expression was detected in the roots and stolons by RT-PCR; however, no amplification was observed in the leaves or stems, which is consistent with the accumulation pattern of glycyrrhizin in planta . These results suggest a role for CYP88D6 as a β-amyrin 11-oxidase in the glycyrrhizin pathway.

    甘草酸是从甘草植物的地下部分提取的一种主要生物活性化合物,是一种三萜皂苷,具有广泛的药理作用,并被全球作为天然甜味剂使用。由于其经济价值,甘草酸的生物合成受到了相当的关注。甘草酸最有可能是从三萜醇β-阿麦烯中衍生出来的,β-阿麦烯是2,3-氧化齐墩果烷环化的初始产物。甘草酸生物合成中随后的步骤被认为涉及在C-11和C-30位置进行一系列氧化反应,然后进行糖基转移至C-3羟基;然而,尚未鉴定到编码相关氧化酶或糖基转移酶的基因。在这里,我们报道了成功鉴定CYP88D6作为甘草酸生物合成基因的细胞色素P450单加氧酶(P450)基因,通过基于转录物组学的选择从甘草表达序列标签(ESTs)收集中。通过体外酶活性测定对CYP88D6进行了表征,并显示其催化β-阿麦烯在C-11处的顺序两步氧化,产生11-氧基-β-阿麦烯,这是β-阿麦烯和甘草酸之间可能的生物合成中间体。CYP88D6与β-阿麦烯合成酶在酵母中共同表达也催化了β-阿麦烯的体内氧化为11-氧基-β-阿麦烯。通过RT-PCR检测,检测到CYP88D6在根和匍匐茎中的表达,但在叶和茎中没有扩增,这与甘草酸在植物中的积累模式一致。这些结果表明CYP88D6在甘草酸途径中作为β-阿麦烯11-氧化酶的作用。
  • Barton, Derek H. R.; Boivin, Jean; Hill, Christopher H., Journal of the Chemical Society. Perkin transactions I, 1986, p. 1797 - 1804
    作者:Barton, Derek H. R.、Boivin, Jean、Hill, Christopher H.
    DOI:——
    日期:——
  • Terpenoids of Canarium zeylanicum
    作者:Wickramasinghe M. Bandaranayake
    DOI:10.1016/s0031-9422(00)81969-x
    日期:1980.1
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定