摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

十四烷 | 629-59-4

中文名称
十四烷
中文别名
正十四烷
英文名称
tetradecane
英文别名
n-tetradecane;Tetradecan
十四烷化学式
CAS
629-59-4
化学式
C14H30
mdl
MFCD00008986
分子量
198.392
InChiKey
BGHCVCJVXZWKCC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    5.5 °C (lit.)
  • 沸点:
    252-254 °C (lit.)
  • 密度:
    0.762 g/mL at 20 °C (lit.)
  • 蒸气密度:
    6.83 (vs air)
  • 闪点:
    211 °F
  • 溶解度:
    <0.0001克/升
  • LogP:
    8.11 at 25℃
  • 物理描述:
    N-tetradecane is a colorless liquid. Must be preheated before ignition can occur. (NTP, 1992)
  • 颜色/状态:
    Colorless liquid
  • 蒸汽密度:
    6.83 (NTP, 1992) (Relative to Air)
  • 蒸汽压力:
    0.015 mm Hg at 25 °C
  • 大气OH速率常数:
    1.92e-11 cm3/molecule*sec
  • 稳定性/保质期:
    - 远离氧化物。 - 它存在于烤烟烟叶、香料烟烟叶以及烟气中。
  • 自燃温度:
    392 °F (200 °C)
  • 分解:
    When heated to decomposition it emits acrid smoke and irritating fumes.
  • 粘度:
    2.13 mPa s at 25 °C
  • 汽化热:
    71.3 KJ/mole at 25 °C
  • 折光率:
    Index of refraction: 1.4290 at 20 °C
  • 保留指数:
    1400

计算性质

  • 辛醇/水分配系数(LogP):
    7.2
  • 重原子数:
    14
  • 可旋转键数:
    11
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

代谢
十四烷可以通过细胞色素P450混合功能氧化酶系统进行代谢。
Tetradecane can be metabolized by a cytochrome p450 mixed-function oxidase system.
来源:Hazardous Substances Data Bank (HSDB)
代谢
替代燃料正在被考虑用于民用和军事用途。其中之一是S-8,这是一种使用费舍尔-托普施过程合成的替代喷气燃料,它不含有芳香化合物,主要由直链和支链烷烃组成。实验室动物中S-8燃料的代谢物尚未被鉴定。这项研究的目标是识别雄性Fischer 344大鼠暴露于气溶胶化的S-8和设计的直链烷烃/多环芳烃混合物(癸烷、十一烷、十二烷、十三烷、十四烷、十五烷、萘和2-甲基萘)后的代谢产物。收集的血和组织样本被分析,以寻找7到15个碳原子的70种直链和支链醇和酮。在S-8暴露后,血液、肺、大脑和脂肪中没有观察到燃料代谢物。在肝脏、尿液和粪便中检测到了代谢物。大多数代谢物是显著烃类的2-和3-位置醇和酮,1-或4-位置的代谢物非常少。在暴露于烷烃混合物后,在血液、肝脏和肺中观察到了代谢物。有趣的是,仅在肺组织中观察到重代谢物(3-十三酮、2-十三醇和2-十四醇),这可能表明代谢发生在肺部。除了这些重代谢物外,本研究观察到的代谢轮廓与先前报告个别烷烃代谢的研究一致。需要进一步的工作来确定母体、初级和次级代谢物的潜在代谢相互作用,并鉴定更多极性代谢物。一些代谢物可能具有作为燃料暴露生物标志物的潜在用途。
Alternative fuels are being considered for civilian and military uses. One of these is S-8, a replacement jet fuel synthesized using the Fischer-Tropsch process, which contains no aromatic compounds and is mainly composed of straight and branched alkanes. Metabolites of S-8 fuel in laboratory animals have not been identified. The goal of this study was to identify metabolic products from exposure to aerosolized S-8 and a designed straight-chain alkane/polyaromatic mixture (decane, undecane, dodecane, tridecane, tetradecane, pentadecane, naphthalene, and 2-methylnaphthalene) in male Fischer 344 rats. Collected blood and tissue samples were analyzed for 70 straight and branched alcohols and ketones ranging from 7 to 15 carbons. No fuel metabolites were observed in the blood, lungs, brain, and fat following S-8 exposure. Metabolites were detected in the liver, urine, and feces. Most of the metabolites were 2- and 3-position alcohols and ketones of prominent hydrocarbons with very few 1- or 4-position metabolites. Following exposure to the alkane mixture, metabolites were observed in the blood, liver, and lungs. Interestingly, heavy metabolites (3-tridecanone, 2-tridecanol, and 2-tetradecanol) were observed only in the lung tissues possibly indicating that metabolism occurred in the lungs. With the exception of these heavy metabolites, the metabolic profiles observed in this study are consistent with previous studies reporting on the metabolism of individual alkanes. Further work is needed to determine the potential metabolic interactions of parent, primary, and secondary metabolites and identify more polar metabolites. Some metabolites may have potential use as biomarkers of exposure to fuels.
来源:Hazardous Substances Data Bank (HSDB)
代谢
JP-8喷气燃料是由芳香烃和脂肪烃组成的复杂混合物。这项研究旨在确定半挥发性正构烷烃(非烷C9、癸烷C10和十四烷C14)在大鼠肝微粒体氧化中的体外代谢速率常数。通过气相色谱测量母体化合物的消失来评估代谢。将不同浓度的正构烷烃与成年雄性F-344大鼠的肝微粒体一起孵化。非烷和癸烷的非线性动力学常数分别为V(max)(nmol/mg蛋白/min)= 7.26 ± 0.20和2.80 ± 0.35,K(M)(微M)= 294.83 ± 68.67和398.70 ± 42.70。通过内在清除率(V(max)/K(M))评估的代谢能力,非烷大约是癸烷的四倍(0.03 ± 0.005比0.007 ± 0.001)。即使在高微蛋白浓度和更长孵化时间的情况下,十四烷也没有明显的代谢。这些结果表明正构烷烃的代谢清除率与其链长呈负相关。这些代谢速率常数将用于更新非烷和癸烷的现有生理基础药代动力学(PBPK)模型,作为开发JP-8的PBPK模型的一部分。
Jet propellant 8 (JP-8) jet fuel is a complex mixture of aromatic and aliphatic hydrocarbons. The aim of this study was to determine in vitro metabolic rate constants for semivolatile n-alkanes, nonane (C9), decane (C10), and tetradecane (C14), by rat liver microsomal oxidation. The metabolism was assessed by measuring the disappearance of parent compound by gas chromatography. Various concentrations of n-alkanes were incubated with liver microsomes from adult male F-344 rats. Nonlinear kinetic constants for nonane and decane were V(max) (nmol/mg protein/min) = 7.26 +/- 0.20 and 2.80 +/- 0.35, respectively, and K(M) (micro M) = 294.83 +/- 68.67 and 398.70 +/- 42.70, respectively. Metabolic capacity as assessed by intrinsic clearance (V(max)/K(M)) was approximately four-fold higher for nonane (0.03 +/- 0.005) than for decane (0.007 +/- 0.001). There was no appreciable metabolism of tetradecane even with higher microsomal protein concentration and longer incubation time. These results show a negative correlation between metabolic clearance and chain length of n-alkanes. These metabolic rate constants will be used to update existing physiologically based pharmacokinetic (PBPK) models for nonane and decane as part of developing a PBPK model for JP-8.
来源:Hazardous Substances Data Bank (HSDB)
代谢
辛酸假丝酵母ATCC 8661在矿物质盐水烃培养基中生长。正十四烷是使用的底物之一。... 对在n-烷烃上生长的培养物中的流体进行分析,表明主要存在与底物链长相匹配的脂肪酸和醇。此外,还有许多其他脂肪酸和醇存在。从细胞中获得的可皂化和不可皂化物质的 分析揭示了基本上相同的产品。存在与n-烷烃底物链长相匹配的一级和二级醇以及脂肪酸,这表明对甲基和α-亚甲基组的攻击正在发生。
Candida lipolytica ATCC 8661 was grown in a mineral salts hydrocarbon medium. n-Tetradecane was one of the substrates used. ... Analyses of fluids from cultures grown on n-alkanes indicated a predominance of fatty acids and alcohols of the same chain length as the substrate. In addition, numerous other fatty acids and alcohols were present. Analyses of saponifiable and nonsaponifiable material obtained from the cells revealed essentially the same products. The presence of primary and secondary alcohols, as well as fatty acids, of the same chain length as the n-alkane substrate suggested that attack on both the methyl and alpha-methylene group was occurring.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
识别和使用:正十四烷是一种无色液体。它用于有机合成,也用作标准化的烃类溶剂,以及作为蒸馏追踪剂。人类暴露和毒性:在工业使用过程中,正十四烷可能通过吸入、摄入或皮肤吸收而对人体有害。动物研究:在兔模型中,正十四烷局部给药导致皮脂腺、表皮和毛囊上皮的明显增生。在老鼠中,静脉注射5800 mg/kg的剂量是致命的。动物表现出睡眠时间改变,包括恢复正常反射的变化。正十四烷吸入肺部时,是一种类似于C6-C10烷烃的窒息剂。这些烷烃导致死亡的速度较慢,并可能引起化学性肺炎。在老鼠的两阶段苯并[a]芘致癌性实验中,正十四烷是一种致癌物和肿瘤促进剂。正十四烷增强了小鼠脾淋巴细胞对植物血凝素(lectin phytohemagglutinin)的促有丝分裂反应。
IDENTIFICATION AND USE: N-Tetradecane is a colorless liquid. It is used in organic synthesis, also as solvent standardized hydrocarbon, and as distillation chaser. HUMAN EXPOSURE AND TOXICITY: During industrial use, tetradecane may be harmful by inhalation, ingestion, or skin absorption. ANIMAL STUDIES: Tetradecane administered topically in a rabbit model caused a marked hyperplasia of sebaseous glands, epidermis, and follicular epithelium. Intravenous injection in mice was lethal at 5800 mg/kg. Animals presented altered sleep time, including change in righting reflex. Tetradecane, when aspired into the lungs, is an asphyxiant similar to the C6-C10 alkanes. These alkanes cause death more slowly and can cause chemical pneumonitis. Tetradecane was a carcinogen and tumor promoter in two-stage experiments of benzo[a]pyrene carcinogenicity in mice. Tetradecane enhances the mitogenic response of murine spleen lymphocytes to the lectin phytohemagglutinin.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
当前研究是一正在进行的方法,用于评估多种脂肪族和芳香烃的剂量相关的经皮吸收。首次处理(1X)包含混合物,其中含有十一烷(4.1%),十二烷(4.7%),十三烷(4.4%),十四烷(3%),十五烷(1.6%),萘(1.1%)和二甲基萘(喷气燃料的1.3%)在十六烷溶剂中使用猪皮流过扩散细胞。其他处理(n = 4细胞)是2X和5X浓度。使用气相色谱-火焰离子化检测器(GC-FID)和顶空固相微萃取纤维技术分析灌注液样本。我们已经对实验进行了标准化,以便在媒体标准中所有测试成分都有良好的线性相关性。估计了所有测试烃的吸收参数,包括扩散性、渗透性、稳态流量和吸收剂量百分比。这种方法提供了一个基线,用于评估它们之间以及与稀释剂(溶剂)的相互作用。通过使用它们的物理化学参数,导出了一个定量结构渗透性关系(QSPR)模型,以预测在此溶剂系统中未知喷气燃料烃的渗透性。我们的发现表明,萘和二甲基萘(DMN)的吸收随剂量增加而增加。
... The present study is an ongoing approach to assess the dose-related percutaneous absorption of a number of aliphatic and aromatic hydrocarbons. The first treatment (1X) was comprised of mixtures containing undecane (4.1%), dodecane (4.7%), tridecane (4.4%), tetradecane (3%), pentadecane (1.6%), naphthalene (1.1%), and dimethyl naphthalene (1.3% of jet fuels) in hexadecane solvent using porcine skin flow through diffusion cell. Other treatments (n = 4 cells) were 2X and 5X concentrations. Perfusate samples were analyzed with gas chromatography-flame ionization detector (GC-FID) using head space solid phase micro-extraction fiber technique. We have standardized the assay to have a good linear correlation for all the tested components in media standards. Absorption parameters including diffusivity, permeability, steady state flux, and percent dose absorbed were estimated for all the tested hydrocarbons. This approach provides a baseline to access component interactions among themselves and with the diluent (solvents). A quantitative structure permeability relationship (QSPR) model was derived to predict the permeability of unknown jet fuel hydrocarbons in this solvent system by using their physicochemical parameters. Our findings suggested a dose related increase in absorption for naphthalene and dimethyl naphthalene (DMN).
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
十四烷增强了小鼠脾淋巴细胞对植物血凝素植物凝集素的增殖反应。
Tetradecane enhances the mitogenic response of murine spleen lymphocytes to the lectin phytohemagglutinin.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
特定链长的线性烷烃能差异化增强小鼠脾淋巴细胞对植物血凝素(phytohemagglutinin)的促有丝分裂反应。研究发现了一种双相的结构-功能关系,十四烷(tetradecane)表现出最大的协同有丝分裂活性。
Linear alkanes of specific chain length enhanced differentially the mitogenic response of murine spleen lymphocytes to the lectin phytohemagglutinin. A biphasic structure-function relationship was found, with maximum comitogenic activity occurring for tetradecane.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 解毒与急救
/SRP:/ 立即急救:确保已经进行了充分的中毒物清除。如果患者停止呼吸,开始人工呼吸,最好使用需求阀复苏器、袋阀面罩装置或口袋面罩,按训练操作。根据需要执行心肺复苏。立即用缓慢流动的水冲洗受污染的眼睛。不要催吐。如果发生呕吐,让患者向前倾或放在左侧(如果可能的话,头部向下),以保持呼吸道畅通,防止窒息。保持患者安静,维持正常体温。寻求医疗帮助。 /脂肪烃及其相关化合物/
/SRP:/ Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand-valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR as necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. /Aliphatic hydrocarbons and related compounds/
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
一般而言,喷气燃料的皮肤渗透和吸收,特别是JP-8,尚未被充分理解,尽管全球政府和行业每年使用超过45亿加仑的JP-8。JP-8的暴露可能来自蒸汽、液体或气溶胶。吸入和皮肤接触是最常见的途径。JP-8在重复或长期暴露时可能会引起刺激,但目前尚不清楚燃料的皮肤渗透是否会导致系统性毒性。此次调查的目的是测量JP-8及其主要成分在大鼠皮肤上的渗透和吸收情况,以便评估人类暴露的潜在影响。我们使用静态扩散细胞来测量JP-8及其成分穿过皮肤的通量以及吸收进入皮肤的动力学。总烃成分的通量为20.3微克/平方厘米/小时。JP-8的13个单独成分渗透到受体溶液中。通量范围从最高51.5微克/平方厘米/小时(一种添加剂,二乙二醇单甲基醚)到最低0.334微克/平方厘米/小时(十三烷)。芳香族成分渗透最快。在皮肤中鉴定出六种成分(全部为脂肪族)。3.5小时内在皮肤中吸收的浓度范围从0.055微克/克皮肤(十四烷)到0.266微克/克皮肤(十一烷)。这些结果表明:(1)JP-8的渗透不会导致系统性毒性,因为所有成分的通量都很低;(2)脂肪族成分被皮肤吸收可能是引起皮肤刺激的原因。
Dermal penetration and absorption of jet fuels in general, and JP-8 in particular, is not well understood, even though government and industry, worldwide, use over 4.5 billion gallons of JP-8 per year. Exposures to JP-8 can occur from vapor, liquid, or aerosol. Inhalation and dermal exposure are the most prevalent routes. JP-8 may cause irritation during repeated or prolonged exposures, but it is unknown whether systemic toxicity can occur from dermal penetration of fuels. The purpose of this investigation was to measure the penetration and absorption of JP-8 and its major constituents with rat skin, so that the potential for effects with human exposures can be assessed. We used static diffusion cells to measure both the flux of JP-8 and components across the skin and the kinetics of absorption into the skin. Total flux of the hydrocarbon components was 20.3 micrograms/sq cm/hr. Thirteen individual components of JP-8 penetrated into the receptor solution. The fluxes ranged from a high of 51.5 micrograms/sq cm/hr (an additive, diethylene glycol monomethyl ether) to a low of 0.334 micrograms/sq cm/hr (tridecane). Aromatic components penetrated most rapidly. Six components (all aliphatic) were identified in the skin. Concentrations absorbed into the skin at 3.5 hr ranged from 0.055 micrograms per gram skin (tetradecane) to 0.266 micrograms per gram skin (undecane). These results suggest: (1) that JP-8 penetration will not cause systemic toxicity because of low fluxes of all the components; and (2) the absorption of aliphatic components into the skin may be a cause of skin irritation.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
JP-8与动物模型和人类的毒性有关。人类接触JP-8的潜力很大。对JP-8的经皮吸收进行量化是评估其职业暴露相关健康危害所必需的。在这项研究中,我们选择了三种脂肪烃(十二烷、十三烷和十四烷)和两种芳香烃(萘和2-甲基萘),它们是JP-8的主要成分。我们研究了上述五种化学物质经皮暴露后皮肤脂质和蛋白质生物物理学的变化,以及宏观屏障的扰动。使用傅里叶变换红外(FTIR)光谱法来研究角质层(SC)脂质和蛋白质的生物物理变化。FTIR结果显示,上述JP-8的所有五种成分都显著(P<0.05)提取了SC脂质和蛋白质。宏观屏障扰动是通过测量经表皮水分丢失(TEWL)的速率来确定的。研究的所有五种JP-8成分与对照组相比,都显著(P<0.05)增加了TEWL。我们量化了在0.25平方米的身体表面积暴露8小时后吸收的化学物质的数量。我们的发现表明,在脂肪烃中十三烷的皮肤透过性最大,在芳香烃中萘的皮肤透过性最大。吸收的化学物质的数量表明,应该监测十三烷、萘及其甲基衍生物可能的系统性毒性。
JP-8 has been associated with toxicity in animal models and humans. There is a great potential for human exposure to JP-8. Quantitation of percutaneous absorption of JP-8 is necessary for assessment of health hazards involved in its occupational exposure. In this study, we selected three aliphatic (dodecane, tridecane, and tetradecane) and two aromatic (naphthalene and 2-methylnaphthalene) chemicals, which are major components of JP-8. We investigated the changes in skin lipid and protein biophysics, and macroscopic barrier perturbation from dermal exposure of the above five chemicals. Fourier transform infrared (FTIR) spectroscopy was employed to investigate the biophysical changes in stratum corneum (SC) lipid and protein. FTIR results showed that all of the above five components of JP-8 significantly (P<0.05) extracted SC lipid and protein. Macroscopic barrier perturbation was determined by measuring the rate of transepidermal water loss (TEWL). All of the five JP-8 components studied, caused significant (P<0.05) increase in TEWL in comparison to control. We quantified the amount of chemicals absorbed assuming 0.25 sq m body surface area exposed for 8 hr. Our findings suggest that tridecane exhibits greater permeability through skin among aliphatic and naphthalene among aromatic JP-8 components. Amount of chemicals absorbed suggests that tridecane, naphthalene and its methyl derivatives should be monitored for their possible systemic toxicity.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
JP-8是一种复杂的混合物,含有超过200种成分,其中大多数是有毒的脂肪族和芳香族碳氢化合物,其中正十四烷和萘被选为计算机模拟的两个代表性化学标记物。因此,模拟了正十四烷和萘蒸气在人体呼吸系统模型中的传输和沉积。吸气沉积数据以区域性沉积分数(DF)和沉积增强因子(DEF)进行了分析。蒸气的沉积受到蒸气特性(例如,扩散性)、气道几何特征、呼吸模式、吸气流量以及气道壁吸收参数的影响。特别是,蒸气的呼吸道摄取在很大程度上受到气道壁吸收程度的影响。例如,由于在粘液层中几乎不溶,正十四烷蒸气在外胸和气管支气管(TB)气道的沉积几乎为零,即DF小于1%。其余蒸气可能会进一步穿透并在肺泡气道中沉积。正十四烷蒸气在肺泡区域吸入时的DF可从7%变化到24%,这取决于呼吸波形、吸入率和粘液层的厚度。相比之下,萘蒸气几乎完全沉积在外胸和TB气道中,并且很少向下游移动并在呼吸区沉积。在正常呼吸条件下(Q = 15-60 L/min),萘蒸气在外胸气道的DF大约为12-34%,尽管在TB气道中大约为66-87%。此外,呼吸途径的变化(例如,从鼻呼吸变为口腔呼吸)可能会影响鼻腔和口腔、鼻咽和口咽区域的蒸气沉积,但对喉部及以后的沉积几乎没有影响。萘和正十四烷蒸气在人体呼吸系统中的不同沉积模式可能表明这些有毒喷气燃料成分具有不同的毒性,因此对健康产生不同的影响。
... JP-8 is a complex mixture containing >200, mostly toxic, aliphatic and aromatic hydrocarbon compounds of which tetradecane and naphthalene were chosen as two representative chemical markers for computer simulations. Thus, transport and deposition of naphthalene and tetradecane vapors have been simulated in models of the human respiratory system. The inspiratory deposition data were analyzed in terms of regional deposition fractions (DFs) and deposition enhancement factors (DEF). The vapor depositions are affected by vapor properties (e.g. diffusivity), airway geometric features, breathing patterns, inspiratory flow rates, as well as airway-wall absorption parameter. Specifically, the respiratory uptake of vapors is greatly influenced by the degree of airway-wall absorption. For example, being an almost insoluble species in the mucus layer, the deposition of tetradecane vapor is nearly zero in the extrathoracic and tracheobronchial (TB) airways, that is, the DF is <1%. The remaining vapors may penetrate further and deposit in the alveolar airways. The DF of tetradecane vapors during inhalation in the alveolar region can range from 7% to 24%, depending on breathing waveform, inhalation rate, and thickness of the mucus layer. In contrast, naphthalene vapor almost completely deposits in the extrathoracic and TB airways and hardly moves downstream and deposits in the respiratory zone. The DFs of naphthalene vapor in the extrathoracic airways from nasal/oral to trachea under normal breathing conditions (Q = 15-60 L/min) are about 12-34%, although they are about 66-87% in the TB airways. In addition, the variation of breathing routes (say, from nasal breathing to oral breathing) may influence the vapor deposition in the regions of nasal and oral cavities, nasopharynx and oropharynx, but hardly affects the deposition at and beyond the larynx. The different deposition patterns of naphthalene and tetradecane vapors in the human respiratory system may indicate different toxic and hence health effects of these toxic jet-fuel components.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
大鼠组织:气态和血液:气态分配系数(PCs)用于辛烷、壬烷、癸烷、十一烷和十二烷(n-C8至n-C12正构烷)的测定,通过瓶平衡法确定。n-C8至n-C12的血液:气态PC值分别为3.1、5.8、8.1、20.4和24.6。正构烷的脂溶性随碳链长度的增加而增加,表明脂溶性是描述正构烷血液:气态PC值的重要决定因素。肌肉:血液、肝脏:血液、大脑:血液和脂肪:血液的PC值分别为辛烷(1.0、1.9、1.4和247)、壬烷(0.8、1.9、3.8和274)、癸烷(0.9、2.0、4.8和328)、十一烷(0.7、1.5、1.7和529)和十二烷(1.2、1.9、19.8和671)。组织:血液的PC值在脂肪中最高,在肌肉中最低。十一烷的大脑:气态PC值与其他正构烷值不一致。使用这些正构烷的测量分配系数值,线性回归用于预测较大正构烷的组织(大脑除外)和血液:气态分配系数值,包括十三烷、十四烷、十五烷、十六烷和十七烷(n-C13至n-C17)。对于n-C8至n-Cl2,实测的组织:气态和血液:气态分配系数值与预测值之间有良好的一致性,这为长链正构烷的分配系数预测提供了信心。
Rat tissue:air and blood:air partition coefficients (PCs) for octane, nonane, decane, undecane, and dodecane (n-C8 to n-C12 n-alkanes) were determined by vial equilibration. The blood:air PC values for n-C8 to n-C12 were 3.1, 5.8, 8.1, 20.4, and 24.6, respectively. The lipid solubility of n-alkanes increases with carbon length, suggesting that lipid solubility is an important determinant in describing n-alkane blood:air PC values. The muscle:blood, liver: blood, brain:blood, and fat:blood PC values were octane (1.0, 1.9, 1.4, and 247), nonane (0.8, 1.9, 3.8, and 274), decane (0.9, 2.0, 4.8, and 328), undecane (0.7, 1.5, 1.7, and 529), and dodecane (1.2, 1.9, 19.8, and 671), respectively. The tissue:blood PC values were greatest in fat and the least in muscle. The brain:air PC value for undecane was inconsistent with other n-alkane values. Using the measured partition coefficient values of these n-alkanes, linear regression was used to predict tissue (except brain) and blood:air partition coefficient values for larger n-alkanes, tridecane, tetradecane, pentadecane, hexadecane, and heptadecane (n-C13 to n-C17). Good agreement between measured and predicted tissue:air and blood:air partition coefficient values for n-C8 to n-Cl2 offer confidence in the partition coefficient predictions for longer chain n-alkanes.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • TSCA:
    Yes
  • 危险品标志:
    Xn
  • 安全说明:
    S23,S24,S24/25,S62
  • 危险类别码:
    R65
  • WGK Germany:
    3
  • 海关编码:
    2901100000
  • 危险品运输编号:
    XB8000000
  • RTECS号:
    XB8000000
  • 包装等级:
    I; II; III
  • 危险标志:
    GHS08
  • 危险性描述:
    H304
  • 危险性防范说明:
    P301 + P310,P331
  • 危险类别:
    6.1
  • 储存条件:
    存放在密封容器内,并置于阴凉、干燥处。储存地点须远离氧化剂。

SDS

SDS:efd17ab5dd97724737d34c830861348b
查看
第一部分:化学品名称
化学品中文名称: 十四烷
化学品英文名称: Tetradecane
中文俗名或商品名:
Synonyms:
CAS No.: 629-59-4
分子式: C 14 H 30
分子量: 198.44
第二部分:成分/组成信息
纯化学品 混合物
化学品名称:十四烷
有害物成分 含量 CAS No.
第三部分:危险性概述
危险性类别:
侵入途径: 吸入 食入 经皮吸收
健康危害: 吸入、摄入或经皮肤吸收后对身体有害,具刺激作用。
环境危害: 对环境有危害,对水体可造成污染。
燃爆危险: 本品可燃,为可疑致癌物,具刺激性。
第四部分:急救措施
皮肤接触: 用肥皂水及清水彻底冲洗。就医。
眼睛接触: 拉开眼睑,用流动清水冲洗15分钟。就医。
吸入: 脱离现场至空气新鲜处。就医。
食入: 误服者,饮适量温水,催吐。就医。
第五部分:消防措施
危险特性: 其蒸气与空气形成爆炸性混合物,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。
有害燃烧产物: 一氧化碳、二氧化碳。
灭火方法及灭火剂: 消防人员必须佩戴过滤式防毒面具(全面罩)或隔离式呼吸器、穿全身防火防毒服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。不宜用水。
消防员的个体防护:
禁止使用的灭火剂:
闪点(℃): 100
自燃温度(℃): 202
爆炸下限[%(V/V)]: 0.5
爆炸上限[%(V/V)]:
最小点火能(mJ):
爆燃点:
爆速:
最大燃爆压力(MPa):
建规火险分级:
第六部分:泄漏应急处理
应急处理: 疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,建议应急处理人员戴好防毒面具,穿化学防护服。用砂土、蛭石或其它惰性材料吸收,收集于密闭容器中作好标记,等待处理。用水刷洗泄漏污染区,经稀释的污水放入废水系统。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。
第七部分:操作处置与储存
操作注意事项: 密闭操作,提供充分的局部排风。防止蒸气泄漏到工作场所空气中。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(全面罩),穿胶布防毒衣,戴橡胶手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。在清除液体和蒸气前不能进行焊接、切割等作业。避免产生烟雾。避免与氧化剂接触。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。
储存注意事项: 储存于阴凉、通风的库房。远离火种、热源。防止阳光直射。保持容器密封。应与氧化剂、食用化学品分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合适的收容材料。
第八部分:接触控制/个体防护
最高容许浓度: 中 国 MAC:未制订标准前苏联 MAC:未制订标准美国TLV—TWA:未制订标准
监测方法:
工程控制: 生产过程密闭,全面通风。
呼吸系统防护: 可能接触其蒸气时,应该佩戴防毒口罩。
眼睛防护: 必要时戴安全防护眼镜。
身体防护: 穿工作服。
手防护: 戴防护手套。
其他防护: 工作后,彻底清洗。保持良好的卫生习惯。
第九部分:理化特性
外观与性状: 无色液体。
pH:
熔点(℃): 5.9
沸点(℃): 252~255
相对密度(水=1): 0.7627
相对蒸气密度(空气=1): 6.83
饱和蒸气压(kPa): 0.133/76.4℃
燃烧热(kJ/mol):
临界温度(℃):
临界压力(MPa):
辛醇/水分配系数的对数值:
闪点(℃): 100
引燃温度(℃): 202
爆炸上限%(V/V):
爆炸下限%(V/V): 0.5
分子式: C 14 H 30
分子量: 198.44
蒸发速率:
粘性:
溶解性: 不溶于水,易溶于醇、醚。
主要用途: 用作合成原料。
第十部分:稳定性和反应活性
稳定性: 在常温常压下 稳定
禁配物: 强氧化剂。
避免接触的条件:
聚合危害: 不能出现
分解产物: 一氧化碳、二氧化碳。
第十一部分:毒理学资料
急性毒性: 属低毒类
急性中毒:
慢性中毒:
亚急性和慢性毒性:
刺激性:
致敏性:
致突变性:
致畸性:
致癌性:
第十二部分:生态学资料
生态毒理毒性:
生物降解性:
非生物降解性:
生物富集或生物积累性:
第十三部分:废弃处置
废弃物性质:
废弃处置方法: 建议用焚烧法处置。在能利用的地方重复使用容器或在规定场所掩埋。
废弃注意事项:
第十四部分:运输信息
危险货物编号:
UN编号:
包装标志:
包装类别:
包装方法:
运输注意事项: 储存于阴凉、通风仓间内。远离火种、热源。保持容器密封。防止阳光曝晒。应与氧化剂分开存放。搬运时要轻装轻卸,防止包装及容器损坏。
RETCS号:
IMDG规则页码:
第十五部分:法规信息
国内化学品安全管理法规: 化学危险物品安全管理条例 (1987年2月17日国务院发布),化学危险物品安全管理条例实施细则 (化劳发[1992] 677号),工作场所安全使用化学品规定 ([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定。
国际化学品安全管理法规:
第十六部分:其他信息
参考文献: 1.周国泰,化学危险品安全技术全书,化学工业出版社,1997 2.国家环保局有毒化学品管理办公室、北京化工研究院合编,化学品毒性法规环境数据手册,中国环境科学出版社.1992 3.Canadian Centre for Occupational Health and Safety,CHEMINFO Database.1998 4.Canadian Centre for Occupational Health and Safety, RTECS Database, 1989
填表时间: 年月日
填表部门:
数据审核单位:
修改说明:
其他信息: 6
MSDS修改日期: 年月日

制备方法与用途

正十四烷

正十四烷是生产十四碳烷烃的主要原料,广泛应用于液体蚊香、大型冲压机的液压油、氯化石蜡及防腐涂料等。此外,它也可用作高档热熔胶,并衍生出十四碳二元酸的直链聚酐,这种物质可用作环氧树脂和丙烯树脂固化剂及聚酯改性添加剂。正十四烷还是尼龙1214的主要原料,在军用器械、机械部件、汽车管材及冷链等多领域也有应用。

制备方法
  1. 将溴代正庚烷(1790.8克,10摩尔)和溴代正癸烷(2211.8克,10摩尔)混合均匀,制得溴代烷混合液。
  2. 称取金属钠483克(21摩尔),切成约1x3厘米的小细条备用。
  3. 在反应釜中投入50克溴代烷混合物和20克金属钠,搅拌升温至80℃,撤去热源,维持120℃恒温并微回流状滴加剩余的溴代烷混合液及金属钠。完成后控制温度在160℃,恒温2小时。
  4. 加入400克95%乙醇和1000毫升水,分出有机物后用水洗至中性,用无水硫酸镁干燥。通过蒸馏收集260-280°C的馏分,并加入600克浓硫酸洗涤至酸层浅黄色。最后水洗有机相至中性、干燥,收集96%正十四烷、98%正十七烷及97%正二十烷,所得正构烷烃含量为96%-98%。
化学性质

正十四烷是一种无色液体,相对密度0.7653,熔点5.5℃,沸点253.5℃;折光率1.4302(20℃),闪点100℃。它不溶于水,可溶于乙醇,并且在空气中燃烧界限为0.5%。

用途

正十四烷可用于有机合成、作为溶剂及标准烃。在硅酸盐阴离子测定中,常采用正十四烷作内标,从而简化分析过程;也可用于气相色谱分析标准和有机合成。

物理化学性质
  • 易燃液体
  • 毒性分级:低毒
  • 急性毒性(静脉注射):小鼠LD50为5800毫克/公斤
  • 爆炸物危险特性:与空气混合可爆炸
  • 可燃性危险特性:遇明火、高温或氧化剂易燃,燃烧产生刺激烟雾
  • 储运特性:库房需通风低温干燥,并与氧化剂、酸类分开存放;不宜久储以防聚合
灭火方法

使用干粉、干砂、二氧化碳或泡沫灭火剂。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    十四烷氧气 作用下, 生成 二氧化碳
    参考文献:
    名称:
    Catalytic oxidation of heavy hydrocarbons over Pt/Al2O3. Oxidation of C10+ solid hydrocarbons representative of soluble organic fraction of Diesel soots
    摘要:
    Oxidation of 20 hydrocarbons (from C10 to C42) representative of soluble organic fraction of Diesel soots were investigated by mixing the hydrocarbon (solid at ambient temperature) with a 0.55 wt%Pt/Al2O3 catalyst (Pt particle size below 1.2 nm). Oxidation rates were characterized by the temperature of half-conversion (T-50) and by the quantity of oxygen consumed during the reaction, which allows to determine the amount of the solid hydrocarbon (initially 100 mg of a mixture of 0.133 mmol HC with 2 g of catalyst) actually oxidized during heating in 1%O-2/He.A preliminary study carried out with two selected hydrocarbons showed that turnover frequencies (TOF) are little dependent on the Pt loading. The hydrocarbons should be vaporized before them to react with the Pt catalyst. Ideally, temperatures of light-off and of vaporization should coincide for the optimal transformation into CO2. The molecular structure of the hydrocarbon (number of aromatic rings, MC ratio, condensed structures, etc.) is a key-parameter for both oxidation and volatility, which explains why a good correlation was observed between T-50 and boiling temperatures T-b. A comparison with light-off tests performed in a stream of gaseous hydrocarbon (vaporized upstream the catalyst) showed that oxidation rates depend on the same structural parameters, except when the hydrocarbon is too volatile (i.e. naphthalene) or, on the contrary, not sufficiently volatile (i.e. n-alkanes in C20-C34). In the first case, a large HC fraction is desorbed without being oxidized while in the second case, oxidation rate is limited by the vaporization. (C) 2014 Elsevier B.V. All rights reserved.
    DOI:
    10.1016/j.apcata.2014.09.031
  • 作为产物:
    描述:
    正十六烷 在 nickel kieselguhr 、 氢气 作用下, 250.0~310.0 ℃ 、1.37 MPa 条件下, 生成 十四烷
    参考文献:
    名称:
    Selective demethylation of saturated hydrocarbons
    摘要:
    公开号:
    US02422674A1
  • 作为试剂:
    描述:
    溴甲苯苯酚 在 polymer-supported crown ether 氢氧化钾十四烷 作用下, 生成 (benzyloxy)benzene
    参考文献:
    名称:
    Reaction mechanism and factors influencing phase-transfer catalytic activity of crown ethers bonded to a polystyrene matrix
    摘要:
    DOI:
    10.1021/ja00316a006
点击查看最新优质反应信息

文献信息

  • Facile Barton−McCombie Deoxygenation of Alcohols with Tetrabutylammonium Peroxydisulfate and Formate Ion
    作者:Hee Sock Park、Hee Yoon Lee、Yong Hae Kim
    DOI:10.1021/ol050886h
    日期:2005.7.1
    [reaction: see text]. A new method for efficient radical deoxygenation of alcohols is described for preparing bulk chemicals avoiding scale-up problems. Treatment of various thiocarbonyl derivatives with (Bu(4)N)(2)S(2)O(8) and HCO(2)Na in DMF afforded the corresponding deoxygenated products in excellent yields. The deoxygenation appears to be initiated by the transfer of a single electron to thiocarbonyl
    [反应:请参见文字]。描述了一种用于醇的有效自由基脱氧的新方法,用于制备散装化学品以避免规模扩大的问题。用(Bu(4)N)(2)S(2)O(8)和HCO(2)Na在DMF中处理各种硫代羰基衍生物以优异的收率提供了相应的脱氧产物。脱氧似乎是由单个电子从CO(2)(*)(-)而不是SO4(*)(-)转移到硫代羰基衍生物而引发的。
  • Thiol-Catalyzed Radical Decyanation of Aliphatic Nitriles with Sodium Borohydride
    作者:Takuji Kawamoto、Kyohei Oritani、Dennis P. Curran、Akio Kamimura
    DOI:10.1021/acs.orglett.8b00626
    日期:2018.4.6
    Radical decyanation of aliphatic nitriles was achieved in the presence of NaBH4 and a thiol. The reaction proceeds via a radical mechanism involving borane radical anion addition to nitrile to form an iminyl radical, which undergoes carbon–carbon cleavage. Reductive radical addition to acrylonitrile is followed by decyanation to give a two-carbon homologated product in a net radical ethylation reaction
    在NaBH 4和硫醇的存在下,脂族腈的自由基发生了脱氰。反应是通过自由基机理进行的,该机理涉及将硼烷自由基阴离子加到腈上形成亚氨基自由基,然后进行碳-碳裂解。向丙烯腈中还原性自由基加成后,进行脱氰,在净自由基乙基化反应中得到两碳均聚物。
  • Bifunctional compounds from reaction of alkoxy hydroperoxides with metal salts
    作者:G. Cardinale、J.A.M. Laan、D. Van Der Steen、J.P. Ward
    DOI:10.1016/s0040-4020(01)91447-4
    日期:1985.1
    with ferrous sulfate. C-C bond scission and radical formation was followed by dimerization of the radicals formed. Ozonides reacted similarly. Acyclic and cyclic olefins, including a cyclic enol ether, gave rise to a range of α,ω-disubstituted products in modest yields. By using ferric chloride, ω-chloro esters were obtained from the alkoxy hydroperoxides derived from olefinic esters.
    通过在醇溶液中使烯烃臭氧化而获得的氢过氧化烷氧基用硫酸亚铁处理。CC键断裂和自由基形成之后,是所形成的自由基的二聚化。臭氧反应类似。无环和环状烯烃,包括环状烯醇醚,以适度的收率产生了一系列α,ω-二取代的产物。通过使用氯化铁,从衍生自烯烃酯的烷氧基氢过氧化物获得ω-氯酸酯。
  • Synthesis of sulfilimines
    申请人:Monsanto Company
    公开号:US04578514A1
    公开(公告)日:1986-03-25
    Processes are disclosed for preparation of N-aryl-S,S-dihydrocarbylsulfilimines by reaction of phenylisocyanate compounds with hydrocarbyl sulfoxides. The sulfilimines can be rearranged to ortho-thioalkylene anilines and the reactions can be employed in a route for converting nitrobenzene compounds to ortho-thioalkylene anilines, which are useful intermediates for preparation of herbicidal compounds.
    所披露的过程涉及通过将苯基异氰酸酯化合物与烃基亚砜反应来制备N-芳基-S,S-二烃基亚磺酰亚胺。这些亚磺酰亚胺可以重排为邻-硫代烷基苯胺,并且这些反应可以用于将硝基苯化合物转化为邻-硫代烷基苯胺,后者是制备除草剂化合物的有用中间体。
  • Visible-Light-Induced Nickel-Catalyzed Cross-Coupling with Alkylzirconocenes from Unactivated Alkenes
    作者:Yadong Gao、Chao Yang、Songlin Bai、Xiaolei Liu、Qingcui Wu、Jing Wang、Chao Jiang、Xiangbing Qi
    DOI:10.1016/j.chempr.2019.12.010
    日期:2020.3
    Transition-metal-catalyzed cross-coupling reactions between naturally abundant sp3-hybridized carbon centers facilitate access to diverse molecules with complex three-dimensional structures. Organometallic compounds are among one of the most powerful reagents that are broadly used in carbon–carbon bond formations. Although sp2-hybridized organometallic compounds are widely employed in cross-couplings, sp3-hybridized
    自然丰富的sp 3-杂化碳中心之间的过渡金属催化交叉偶联反应有助于获得具有复杂三维结构的各种分子。有机金属化合物是最强大的试剂之一,广泛用于碳-碳键的形成。尽管sp 2-杂化的有机金属化合物广泛用于交叉偶联,但是sp 3-杂化的有机金属偶联剂的开发较少。在这里,我们报告可见光诱导的单个镍催化的C(sp 3)–C(sp 3),C(sp 3)–C(sp 2)和C(sp 3)–C(sp)使用烷基锆茂的交叉偶联反应,该反应很容易从末端或内部未活化的烯烃通过加氢锆和链步反应就地生成。该方法温和,适用于多种底物,包括伯,仲,叔烷基,芳基,烯基,炔基卤化物和各种烯烃。机理研究表明,镍催化的自由基交叉偶联是一种新颖的途径,代表了锆锆茂的首次可见光诱导的转变。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台