In a controlled experiment 15 (79%) of 19 severely alcoholic men but only 1 of 22 controls had a serum concentration of greater than or equal to 5 umol/L 2,3-butanediol after ingestion of distilled spirits. Another diol, 1,2-propanediol, was found in a concentration of greater than or equal to 5 umol/L in all patients' specimens after drinking; but it was also present in lower concentrations in the reference specimens of most of the patients. These data are consistent with the experimental evidence that ethanol can be metabolized in rats to produce 2,3-butanediol and with the epidemiological hypothesis that severely alcoholic men metabolize ethanol by a different pathway than do control subjects.
Understanding the capacity of Paenibacillus polymyxa DSM 365 to tolerate increasing concentrations of 2,3-butanediol (2,3-BD) is critical to engineering a 2,3-BD-overproducing strain. Hence, we investigated the response of P. polymyxa to high 2,3-BD concentrations. In fed-batch cultures (6-L bioreactor) 2,3-BD was accumulated to a maximum concentration of 47 g/L despite the presence of residual 13 g/L glucose in the medium. Concomitantly, accumulation of acetoin, the precursor of 2,3-BD increased after maximum 2,3-BD concentration was reached, suggesting that 2,3-BD was reconverted to acetoin after the concentration tolerance threshold of 2,3-BD was exceeded. Cultures of P. polymyxa were then challenged with levo-2,3-BD (20, 40 and 60 g/L) at 0h in a glucose medium, and a concentration dependent growth inhibition response to levo-2,3-BD was observed. The growth of P. polymyxa was completely inhibited by 60 g/L levo-2,3-BD. Furthermore, P. polymyxa was challenged with incremental 2,3-BD concentrations (20, 40 and 60 g/L at 12, 24 and 36 hr, respectively) to mimic 2,3-BD accumulation during fermentation. Interestingly, 2,3-BD was reconverted to acetoin when its concentration reached 60 g/L, possibly to alleviate 2,3-BD toxicity. Collectively, our findings indicate that 2,3-BD-mediated toxicity is a major metabolic impediment to 2,3-BD overproduction, thus, making it an important metabolic engineering target towards rational design of a 2,3-BD-overproducing strain.
The metabolism of diacetyl (2,3-butanedione), acetoin (3-hydroxy-2-butanone), and 2,3-butanediol, which are metabolites of acetaldehyde, was quantitatively investigated using rat liver homogenate, liver perfusion, and in vivo experiments. Diacetyl and acetoin were reduced to 2,3-butanediol in these experiments, but acetoin and 2,3-butanediol were scarcely oxidized to diacetyl, indicating that the reduction reaction to 2,3-butanediol from diacetyl occurs actively in rat liver. The formation of acetoin from diacetyl required either NADH or NADPH as a reductant, while the reduction of acetoin to 2,3-butanediol required NADH. Acetoin and 2,3-butanediol were more readily accumulated than diacetyl in brain tissue.
IDENTIFICATION AND USE: 2,3-Butanediol is nearly colorless, crystalline solid or liquid. 2,3-Butanediol is used as a crosslinking agent for naphthalene-1,5-diisocyanate in the production of specific hard-rubber products. Derivatives of 2,3-butanediol are important as intermediates in the pharmaceutical industry. 2,3-Butanediols have some interest as humectants and in the synthesis of polymers and plasticizers. HUMAN STUDIES: For erythrocytes a solution of 30% 2,3-butanediol showed relatively low toxicity. Hemolysis was only 2% after 5 hr, but increased to 6% after 21 hr and reached 60% after 46 hr. ANIMAL STUDIES: Effects of 2,3-butanediol on the central nervous system (CNS) were investigated by using the analysis of EEG (electroencephalogram) spectral powers recorded at the frontal cortex in rats. It was found that 2,3-butanediol treatment led to increase in EEG spectral powers by oral and intravenous administrations at relatively low doses. From these findings it can be concluded that 2,3-butanediol has a potent CNS depressant effect. 2,3-Butanediol was not embryotoxic when examined in cultured 10-day rat embryo. 2,3-Butanediol has a negative regulatory effect on rats innate immunity response.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
副作用
神经毒素 - 急性溶剂综合症
Neurotoxin - Acute solvent syndrome
来源:Haz-Map, Information on Hazardous Chemicals and Occupational Diseases
Erythrocytes were stored at 4 degrees C in solutions of phosphate-buffered saline containing 2,3-butanediol and 4% (w/w) trehalose, sucrose, sorbitol, or mannitol. The 2,3-butanediol contained 96.7% (w/w) racemic mixture of the levo and dextro isomers and only 3.1% (w/w) of the meso isomer (2,3-butanediol 97% dl). The concentrations of 2,3-butanediol were 30 and 35% (w/w). A solution of 30% 2,3-butanediol showed relatively low toxicity. Hemolysis was only 2% after 5 hr, but increased to 6% after 21 hr and reached 60% after 46 hr. Adding 4% (w/w) of one of the above compounds drastically decreased the toxicity. The two most efficient were the sugars trehalose and sucrose. With 30% 2,3-butanediol and 4% of any of the four compounds, hemolysis was about 0.6% after 2 days of storage. Furthermore, with trehalose or sucrose, hemolysis remained below 3% for 1 month. With sorbitol or mannitol, hemolysis slowly increased to 2% after 7 days and then increased rapidly. Even with 35% 2,3-butanediol, solutions containing trehalose or sucrose showed low toxicity. Hemolysis was also measured after redilution to buffered solution without 2,3-butanediol and without the additive, to mimic perfusion of organs with cryoprotectants and washing. Minima of hemolysis were observed after a few days of storage. The present solutions also have high glass-forming tendencies. They could be of great interest for organ vitrification.
... A 16 hr pretreatment with either 2-butanone (2.1 mL/kg, orally) or 2,3-butanediol (2.12 mL/kg, orally) markedly enhanced the hepatotoxic response to CCl4 (0.1 mL/kg, ip), as measured by serum glutamic pyruvic transaminase activity and hepatic triglyceride content. In vivo, limited formation of 3-hydroxy-2-butanone occurred after this dose of 2,3-butanediol.
/SRP:/ Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand-valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR as necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. /Higher alcohols (>3 carbons) and related compounds/
In a controlled experiment 15 (79%) of 19 severely alcoholic men but only 1 of 22 controls had a serum concentration of greater than or equal to 5 umol/l 2,3-butanediol after ingestion of distilled spirits.
1.周国泰,化学危险品安全技术全书,化学工业出版社,1997 2.国家环保局有毒化学品管理办公室、北京化工研究院合编,化学品毒性法规环境数据手册,中国环境科学出版社.1992 3.Canadian Centre for Occupational Health and Safety,CHEMINFO Database.1998 4.Canadian Centre for Occupational Health and Safety, RTECS Database, 1989