用途
3,5-二氯-4-氨基苯乙酮为米黄色结晶状物质,可用作医药中间体。
毒性
3,5-二氯-4-氨基苯乙酮对人和动物具有肝毒性和肾毒性作用,还可能引发心肌问题、中枢神经系统抑制及胃肠道刺激。
化学性质
3,5-二氯-4-氨基苯乙酮为米黄色结晶,熔点在158-160℃之间。该物质不溶于冷水,微溶于热水,易溶于乙醇、乙醚和苯等有机溶剂。
用途
此化合物化学性质活泼,在工业化学、农业化学及药物化学等领域有广泛应用。作为选择性氧化剂和绿色偶联试剂,它参与多种氧化反应、重排反应与胺化反应等。在工业生产中,3,5-二氯-4-氨基苯乙酮还可用作药物(如克喘素)、消毒剂、染料、食品调味料、胶粘剂及炸药的合成原料。
用途
它是合成止咳平喘药克喘素的重要中间体。
生产方法
3,5-二氯-4-氨基苯乙酮可通过对氨基苯乙酮进行氯化得到。具体步骤是:将对氨基苯乙酮和80%乙酸加入反应锅中搅拌溶解,迅速加入含氯的冰乙酸溶液(加料温度保持在5℃),加完后立即投入冰水中析出沉淀,过滤并用水洗涤粗品,最后用乙醇重结晶得到成品。
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
4-氨基苯乙酮 | 4-Aminoacetophenone | 99-92-3 | C8H9NO | 135.166 |
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
—— | 4-Amino-3,5-dichloro-α-oxobenzeneacetaldehyde | 56836-94-3 | C8H5Cl2NO2 | 218.039 |
4-氨基-3,5-二氯-Α-溴代苯乙酮 | 1-(4-amino-3,5-dichlorophenyl)-2-bromoethan-1-one | 37148-47-3 | C8H6BrCl2NO | 282.952 |
—— | 2,6-dichloro-4-acetylphenyl isocyanate | 60677-17-0 | C9H5Cl2NO2 | 230.05 |
—— | (E)-4-amino-3,5-dichloro-γ-oxo-benzenebutenoic acid | 349534-87-8 | C10H7Cl2NO3 | 260.076 |
—— | 3,5-dichloro-4-(N,N-diethylamino)acetophenone | 82165-04-6 | C12H15Cl2NO | 260.163 |
—— | 3,5-Dichlor-4-carbamoylaminoacetophenon | 60677-37-4 | C9H8Cl2N2O2 | 247.081 |
3’,5’-二氯苯乙酮 | 3',5'-dichloroacetophenone | 14401-72-0 | C8H6Cl2O | 189.041 |
—— | 2,6-Dichloro-4-ethylphenylhydrazine | —— | C8H10Cl2N2 | 205.087 |
—— | 3,5-Dichlor-4-methoxycarbonylaminoacetophenon | 60677-86-3 | C10H9Cl2NO3 | 262.092 |
—— | 3,5-dichloro-4-methylcarbamoylaminoacetophenone | 60677-35-2 | C10H10Cl2N2O2 | 261.108 |
—— | 3,5-Dichlor-4-phenylcarbamoylaminoacetophenon | 60677-48-7 | C15H12Cl2N2O2 | 323.178 |
—— | 3,5-Dichlor-4-carbamoylamino-α-bromacetophenon | 60677-38-5 | C9H7BrCl2N2O2 | 325.977 |
—— | α-methyl-4-amino-3,5-dichlorobenzylamine | 918451-58-8 | C8H10Cl2N2 | 205.087 |
—— | 3,5-Dichlor-4-aethoxycarbonylaminoacetophenon | 60677-26-1 | C11H11Cl2NO3 | 276.119 |
—— | 3,5-Dichlor-4-aethylcarbamoylaminoacetophenon | 60677-52-3 | C11H12Cl2N2O2 | 275.134 |
—— | 3',5'-dichloro-4'-pivaloylaminoacetophenone | 69957-01-3 | C13H15Cl2NO2 | 288.174 |
2-氨基-1-(4-氨基-3,5-二氯苯基)乙醇 | 4-amino-α-(aminomethyl)-3,5-dichlorobenzenemethanol | 38339-07-0 | C8H10Cl2N2O | 221.086 |
—— | 3,5-dichloro-4-isopropoxycarbonylaminoacetophenone | 60677-30-7 | C12H13Cl2NO3 | 290.146 |
—— | 3,5-dichloro-4-methylcarbamoylamino-α-bromoacetophenone | 60677-36-3 | C10H9BrCl2N2O2 | 340.004 |
—— | 3,5-dichloro-4-n-propoxycarbonylaminoacetophenone | 60677-28-3 | C12H13Cl2NO3 | 290.146 |
—— | 3,5-dichloro-4-methoxycarbonylamino-α-bromoacetophenone | 60677-18-1 | C10H8BrCl2NO3 | 340.988 |
—— | 3,5-dichloro-4-phenylcarbamoylamino-α-bromoacetophenone | 60677-49-8 | C15H11BrCl2N2O2 | 402.075 |
—— | 3’,4’,5’-Trichloroacetophenone | 35981-65-8 | C8H5Cl3O | 223.486 |
—— | 3,5-dichloro-4-(2-methoxyethoxy)carbonylaminoacetophenone | 60677-34-1 | C12H13Cl2NO4 | 306.146 |
—— | 4-amino-bromo-3,5-dichloroacetophenone | —— | C8H6BrCl2NO | 282.952 |
—— | 3,5-dichloro-4-ethylcarbamoylamino-α-bromoacetophenone | 60677-53-4 | C11H11BrCl2N2O2 | 354.031 |
—— | 3,5-dichloro-4-ethoxycarbonylamino-α-bromoacetophenone | 60677-27-2 | C11H10BrCl2NO3 | 355.015 |
—— | N-[1-(4-amino-3,5-dichlorophenyl)ethylidene]hydroxylamine | 120215-63-6 | C8H8Cl2N2O | 219.07 |
—— | 3,5-dichloro-4-isopropoxycarbonylamino-α-bromoacetophenone | 60677-31-8 | C12H12BrCl2NO3 | 369.042 |
—— | 3,5-dichloro-4-n-propoxycarbonylamino-α-bromoacetophenone | 60677-29-4 | C12H12BrCl2NO3 | 369.042 |
—— | 3,5-dichloro-4-benzyloxycarbonylaminoacetophenone | 60677-32-9 | C16H13Cl2NO3 | 338.19 |
—— | 3,5-dichloro-4-(2-methoxyethoxy)carbonylamino-α-bromoacetophenone | 60677-88-5 | C12H12BrCl2NO4 | 385.042 |
克仑特罗 | clenbuterol | 37148-27-9 | C12H18Cl2N2O | 277.194 |
—— | 3,5-dichloro-4-benzyloxycarbonylamino-α-bromoacetophenone | 60677-33-0 | C16H12BrCl2NO3 | 417.086 |
—— | 3,5-Dichlor-4-cyclohexyloxycarbamoylaminoacetophenon | 60677-50-1 | C15H17Cl2NO3 | 330.211 |
—— | 3,5-dichloro-4-cyclohexyloxycarbonylamino-α-bromoacetophenone | 60677-51-2 | C15H16BrCl2NO3 | 409.107 |
Isoliquiritigenin (ISL), a natural product isolated from licorice root, exhibits anti-gastric cancer effects. However, applications of ISL are still limited in clinical practice due to its poor bioavailability. To discovery of more effective anti-gastric cancer agents based on ISL, aldol condensation reaction was applied to synthesize the ISL analogues. MTS assay was used to evaluate the inhibitory activities of ISL analogues against SGC-7901, BGC-823 and GES-1 cells in vitro. Cell cycle distribution, apoptosis and reactive oxygen species (ROS) generation were detected by flow cytometry. Western blot assay was used to analyze the expression levels of related proteins. The drug-likeness and pharmacokinetic properties were predicted with Osiris property explorer and PreADMET server. As a result, 18 new ISL analogues (ISL-1 to ISL-18) were synthesized. Among these analogues, ISL-17 showed the strongest inhibitory activities against SGC-7901 and BGC-823 cells, and could induce G2/M cell cycle arrest and apoptosis in these two cell lines. Treatment with ISL-17 resulted in increased ROS production and elevated autophagy levels in SGC-7901 cells. The PI3K/AKT/mTOR signaling pathway was down-regulated after treatment with ISL-17 in SGC-7901 cells. The results of drug-likeness and pharmacokinetic prediction indicated that all the ISL analogues complied with Lipinski's rule of five and Veber rule and had a favorable ADME character. Overall, our results attest that ISL-17 holds promise as a candidate agent against gastric cancer.