摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

甲醇 | 67-56-1

中文名称
甲醇
中文别名
木精;木醇;羟基甲烷;木酒精;精甲醇;甲醇(精);甲醇(无水);无水甲醇
英文名称
methanol
英文别名
methyl alcohol;MeOH
甲醇化学式
CAS
67-56-1
化学式
CH4O
mdl
MFCD00004595
分子量
32.0422
InChiKey
OKKJLVBELUTLKV-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    -98 °C(lit.)
  • 沸点:
    65.4 °C(lit.)
  • 密度:
    0.791 g/mL at 25 °C
  • 蒸气密度:
    1.11 (vs air)
  • 闪点:
    52 °F
  • 溶解度:
    混溶(lit.)于苯
  • 最大波长(λmax):
    λ: 210 nm Amax: 0.50λ: 220 nm Amax: 0.30λ: 230 nm Amax: 0.15λ: 235 nm Amax: 0.10λ: 240 nm Amax: 0.05λ: 260 nm Amax: 0.01λ: 400 nm Amax: 0.01
  • 介电常数:
    33.6(20℃)
  • 暴露限值:
    TLV-TWA (200 ppm) (ACGIH), 260mg/m3, 1040mg/m3 (800 ppm) 15minutes (NIOSH); STEL 310mg/m3 (250 ppm); IDLH 25,000 ppm (NIOSH).
  • LogP:
    -0.770
  • 物理描述:
    Methanol appears as a colorless fairly volatile liquid with a faintly sweet pungent odor like that of ethyl alcohol. Completely mixes with water. The vapors are slightly heavier than air and may travel some distance to a source of ignition and flash back. Any accumulation of vapors in confined spaces, such as buildings or sewers, may explode if ignited. Used to make chemicals, to remove water from automotive and aviation fuels, as a solvent for paints and plastics, and as an ingredient in a wide variety of products.
  • 颜色/状态:
    Colorless liquid
  • 气味:
    Slight alcoholic odor when pure; repulsive, pungent odor when crude
  • 蒸汽密度:
    1.11 (NTP, 1992) (Relative to Air)
  • 蒸汽压力:
    VP: 92 mm Hg at 20 °C
  • 亨利常数:
    Henry's Law constant = 4.55X10-6 atm-cu m/mol at 25 °C
  • 大气OH速率常数:
    9.44e-13 cm3/molecule*sec
  • 稳定性/保质期:
    1. **化学性质**:甲醇具有饱和一元醇的通性,但由于只有一个碳原子,因此有其特有的反应。例如: - 与氯化钙形成结晶状物质CaCl2·4CH3OH,与氧化钡形成BaO·2CH3OH的分子化合物并溶解于甲醇中;类似的化合物包括MgCl2·6CH3OH、CuSO4·2CH3OH、CH3OK·CH3OH、AlCl3·4CH3OH、AlCl3·6CH3OH和AlCl3·10CH3OH。 - 与其他醇不同,由于-CH2OH基与氢结合,在氧化时生成的甲酸进一步氧化为CO2。 - 甲醇与氯或溴不易发生反应,但易与其水溶液作用,最初生成二氯甲醚(CH2Cl)2O,因水的作用转变成HCHO和HCl。 - 与碱、石灰一起加热,产生氢气并生成甲酸钠:CH3OH+NaOH→HCOONa+2H2。 - 与锌粉一起蒸馏,发生分解,生成CO和H2O。 2. **甲醇**是一种有毒化工产品,具有显著的麻醉作用,对视神经危害最为严重。饮入5~10ml/kg可致严重中毒,10ml/kg以上有失明危险,30ml/kg可以致命。甲醇可通过消化道、呼吸道及皮肤渗透侵入人体导致中毒。吸入浓的甲醇蒸气时,除特有的症状酩酊和头痛外,常使视力模糊而眼痛。这些症状有的在数小时后即能发生,重症时呈现眩晕、呼吸困难、胃痛、疝痛、便秘,有时还会出血,需要数日才恢复,在此期间也能引起疲劳、不适,重症时可出现发绀。不论急性或慢性中毒,都需要较长时间才能恢复。工作场所空气中甲醇蒸气最高容许浓度为260mg/m³。防护方法在于生产设备密闭,严防入口、入眼或接触伤口。如有黏沾,迅速用水冲洗。急性中毒者应迅速移到新鲜空气处,并送医院诊治。 3. **属中等毒类**。主要作用于神经系统,具有麻醉作用。可通过皮肤吸收、饮用或吸入蒸气而造成中毒,其特征是刺激视神经及网膜,导致眼睛失明。乙醇在体内能迅速分解排除,而甲醇排出缓慢,故有累积性。吸入甲醇蒸气会刺激眼、鼻和咽喉,引起眩晕、头痛、沉醉、流泪和视力模糊。重症时呈现麻醉、呼吸困难、恶心、呕吐、胃痛、疝痛、膀胱痛、便秘,有时还会出血。一般误饮5~10ml可致严重中毒,15ml可致失明,30ml左右可致命。兔经口致死量为10ml/kg。嗅觉阈浓度为140mg/m³。TJ36-79规定车间空气中最高容许浓度为50mg/m³。 4. **稳定性**:稳定(参考文献[25])。 5. **禁配物**:酸类、酸酐、强氧化剂、碱金属(参考文献[26])。 6. **聚合危害**:不聚合(参考文献[27])。
  • 自燃温度:
    867 °F (464 °C)
  • 分解:
    Hazardous decomposition products formed under fire conditions: Carbon oxides
  • 粘度:
    0.544 mPa.s at 25 °C
  • 燃烧热:
    726.1 kJ/mole
  • 汽化热:
    37.34 kJ/mole (at 25 °C)
  • 表面张力:
    22.07 mN/m at 25 °C
  • 电离电位:
    10.84 eV
  • 气味阈值:
    Odor Threshold Low: 4.2 [mmHg]; Odor Threshold High: 5960.0 [mmHg]; Detection odor threshold from AIHA (mean = 160 ppm)
  • 折光率:
    Index of refraction: 1.3292 at 20 °C/D
  • 解离常数:
    pKa = 15.3
  • 保留指数:
    372.7 ;378.2 ;400 ;400 ;361 ;368 ;380 ;340 ;384 ;356 ;373 ;330 ;395 ;379 ;373 ;373 ;408 ;381 ;373 ;386.1 ;382 ;362 ;381 ;381 ;370 ;354.2 ;381 ;353 ;381 ;381 ;348 ;353 ;391 ;384

计算性质

  • 辛醇/水分配系数(LogP):
    -0.5
  • 重原子数:
    2
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    20.2
  • 氢给体数:
    1
  • 氢受体数:
    1

ADMET

代谢
我们最近发现,受伤植物释放的甲醇可能作为植物间和植物与动物间通讯的信号分子。在哺乳动物中,甲醇被认为是一种毒药,因为醇脱氢酶(ADH)会将甲醇转化为甲醛和其他产物。然而,在健康志愿者的血液和呼出气体中检测到甲醇,这表明甲醇可能是一种具有特定功能的化学物质,而不是代谢废物。通过对小鼠大脑进行全基因组分析,我们证明了血液中甲醇浓度的增加会导致参与解毒过程和调节醇/醛脱氢酶基因簇的基因的mRNA积累发生变化。为了测试ADH在维持血浆中低甲醇浓度方面的作用,我们使用了特定的ADH抑制剂4-甲基吡唑(4-MP),并显示腹膜内给药4-MP导致血浆中甲醇、乙醇和甲醛浓度显著增加。去除肠道显著降低了甲醇加入血浆的速度,并表明肠道菌群可能参与内源性甲醇的产生。在门静脉给药4-MP后,肝脏匀浆中甲醇和乙醇含量的增加表明,肝脏中的ADH是代谢甲醇的主要酶。肝脏mRNA定量显示,参与细胞信号传导和解毒过程的基因的mRNA积累发生了变化。我们假设内源性甲醇通过控制mRNA合成作为调节体内平衡的调节剂。
We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into ... formaldehyde /and other products/. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signaling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.
来源:Hazardous Substances Data Bank (HSDB)
代谢
许多研究表明,甲醇对灵长类的毒性主要与其代谢物甲醛(FA)和甲酸有关。尽管甲醇的代谢和毒理学在周围器官中研究得最为透彻,但很少有研究关注大脑,也没有研究报告实验证据表明甲醇在灵长类大脑中转化为FA。在这项研究中,三只恒河猴被给予单次脑室内注射甲醇,以探究甲醇转化为FA的过程是否在非人灵长类大脑中发生。随后在不同时间点评估脑脊液(CSF)中FA的水平。在甲醇注射后18小时,FA水平显著升高。此外,FA水平在注射后30小时恢复到正常的生理水平。这些发现直接证明了甲醇在非人灵长类大脑中被氧化为FA,并且产生的部分FA从脑细胞中释放出来。这项研究表明,FA是由非人灵长类大脑中甲醇代谢过程产生的,FA可能在甲醇的神经毒理学中发挥重要作用。
Many studies have reported that methanol toxicity to primates is mainly associated with its metabolites, formaldehyde (FA) and formic acid. While methanol metabolism and toxicology have been best studied in peripheral organs, little study has focused on the brain and no study has reported experimental evidence that demonstrates transformation of methanol into FA in the primate brain. In this study, three rhesus macaques were given a single intracerebroventricular injection of methanol to investigate whether a metabolic process of methanol to FA occurs in nonhuman primate brain. Levels of FA in cerebrospinal fluid (CSF) were then assessed at different time points. A significant increase of FA levels was found at the 18th hour following a methanol injection. Moreover, the FA level returned to a normal physiological level at the 30th hour after the injection. These findings provide direct evidence that methanol is oxidized to FA in nonhuman primate brain and that a portion of the FA generated is released out of the brain cells. This study suggests that FA is produced from methanol metabolic processes in the nonhuman primate brain and that FA may play a significant role in methanol neurotoxicology.
来源:Hazardous Substances Data Bank (HSDB)
代谢
甲醇是果蝇Drosophila melanogaster发酵水果中最常见的短链醇之一,这些水果是它们的自然食物和产卵地点。我们之前的结果显示,细胞色素P450单加氧酶(CYPs)与幼虫中的甲醇解毒有关。过氧化氢酶、醇脱氢酶(ADHs)、酯酶(ESTs)和谷胱甘肽S-转移酶(GSTs)分别被3-氨基-1,2,4-三唑(3-AT)、4-甲基吡唑(4-MP)、三苯基磷酸(TPP)和二乙基顺丁烯二酸(DEM)特异性抑制。CYPs被胡椒基丁氧基(PBO)和1-氨基苯并三唑(1-ABT)抑制。在本文中,通过确定甲醇及其相应抑制剂的组合指数,研究了这些酶在雌雄成虫甲醇代谢中的作用。当PBO、1-ABT、3-AT、4-MP和TPP分别与甲醇混合时,它们在饮食暴露72小时后对成虫的死亡率显示出显著的协同作用。相比之下,DEM和甲醇混合物显示出相加效应。此外,甲醇暴露显著增加了CYP活性并上调了几个Cyp基因的mRNA表达水平。使用不同菌株的生物测定表明,ADH活性的变化和alpha-Est7的RNAi介导敲低显著改变了甲醇的LC50值。这些结果表明,CYPs、过氧化氢酶、ADHs和ESTs在成虫中部分负责甲醇的消除。幼虫和成虫之间在甲醇代谢方面似乎存在一些差异,但在雌雄成虫之间则没有差异。
Methanol is among the most common short-chain alcohols in fermenting fruits, the natural food and oviposition sites of the fruit fly Drosophila melanogaster. Our previous results showed that cytochrome P450 monooxygenases (CYPs) were associated with methanol detoxification in the larvae. Catalases, alcohol dehydrogenases (ADHs), esterases (ESTs) and glutathione S-transferases (GSTs) were specifically inhibited by 3-amino-1,2,4-triazole (3-AT), 4-methylpyrazole (4-MP), triphenyl phosphate (TPP) and diethylmeleate (DEM), respectively. CYPs were inhibited by piperonyl butoxide (PBO) and 1-aminobenzotriazole (1-ABT). In the present paper, the involvements of these enzymes in methanol metabolism were investigated in female and male adults by determining the combination indices of methanol and their corresponding inhibitors. When PBO, 1-ABT, 3-AT, 4-MP and TPP were individually mixed with methanol, they exhibited significant synergism to the mortality of the adults after 72 hr of dietary exposure. In contrast, the DEM and methanol mixture showed additive effects. Moreover, methanol exposure dramatically increased CYP activity and up-regulated mRNA expression levels of several Cyp genes. Bioassays using different strains revealed that the variation in ADH activity and RNAi-mediated knockdown of alpha-Est7 significantly changed LC50 values for methanol. These results suggest that CYPs, catalases, ADHs and ESTs are partially responsible for methanol elimination in adults. It seems that there are some differences in methanol metabolism between larvae and adults, but not between female and male adults.
来源:Hazardous Substances Data Bank (HSDB)
代谢
甲醇的代谢过程分为三个步骤:首先,通过肝脏的醇脱氢酶将甲醇氧化成甲醛,这是一个饱和速率限制过程。第二步,甲醛被醛脱氢酶氧化成甲酸或甲酸盐,这取决于pH值。第三步,甲酸通过一个依赖叶酸的途径被解毒成二氧化碳。在所有物种中,甲醇从血液中的消除似乎都很慢,特别是与乙醇相比。在人类中,尿液中的甲醇浓度被发现与血液中甲醇的浓度成正比。
Metabolism of methanol occurs in a three-step process initially involving oxidation to formaldehyde by hepatic alcohol dehydrogenase, which is a saturable rate-limiting process. In the second step, formaldehyde is oxidized by aldehyde dehydrogenase to formic acid or formate depending on the pH. In the third step, formic acid is detoxified by a folate-dependent pathway to carbon dioxide. Elimination of methanol from the blood appears to be slow in all species, especially when compared to ethanol. In humans, urinary methanol concentrations have been found to be proportional to the concentration of methanol in blood.
来源:Hazardous Substances Data Bank (HSDB)
代谢
甲醇通过醇脱氢酶代谢成甲醛,然后通过甲醛脱氢酶从甲醛转化为甲酸,最后通过有限的H4叶酸转化为二氧化碳。
Methanol is metabolized to formaldehyde by alcohol dehydrogenase, then from that to formate by formaldehyde dehydrogenase, and then to carbon dioxide by limited H4 folate. (T10)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
甲醇的识别和用途:甲醇是一种无色透明的液体,用于水力压裂混合物中。它还用作天然气脱水利器;公用事业的燃料(甲基燃料);通过连续发酵制造合成蛋白的原料;燃料电池的氢源,家用取暖油的扩展剂。人体研究:人类(和非人灵长类动物)对甲醇中毒具有独特的敏感性。几乎所有关于人类甲醇毒性的信息都与急性暴露而非慢性暴露的后果有关。绝大多数涉及甲醇的中毒事件是由于饮用掺假饮料和含甲醇的产品引起的。在没有医疗治疗的情况下,甲醇的最小致死剂量在0.3到1克/千克之间。急性甲醇中毒的一个突出特点是毒剂量的个体间差异很大。决定人类对甲醇毒性易感性的两个重要因素似乎是:(1)同时摄入乙醇,这会减慢甲醇进入代谢途径的速度;(2)肝脏叶酸状态,这决定了甲酸解毒的速度。甲醇中毒的症状和体征可能在无症状期之后才出现,包括视力障碍、恶心、腹部和肌肉疼痛、眩晕、虚弱和意识障碍,范围从昏迷到阵挛性癫痫发作。视力障碍从轻微的畏光、雾蒙蒙或视力模糊到明显降低的视觉敏锐度和完全失明。在极端情况下,会导致死亡。主要临床特征是严重的代谢性酸中毒,属于阴离子间隙型。动物研究:啮齿类动物和非人灵长类动物在代谢解毒或去除甲酸方面的速率差异很大,这是观察到的啮齿类动物和非人灵长类动物甲醇毒性显著差异的基础。不同物种之间甲醇的急性短期毒性差异很大,毒性在代谢甲酸能力较弱的物种中最高。在甲酸代谢不良的情况下,致命的甲醇中毒是由于代谢性酸中毒和神经元毒性导致的,而在容易代谢甲酸的动物中,中枢神经系统抑制(昏迷、呼吸衰竭)通常是死亡的原因。总体而言,甲醇对非灵长类动物的急性毒性较低。在兔中,甲醇对眼睛有中等刺激性。它不是皮肤致敏剂。甲醇暴露与某些动物研究中淋巴瘤的关系很弱,更好地解释为混淆因素或不适用于人类的机制。在整个胚胎发生期,怀孕的啮齿类动物吸入甲醇会引起一系列浓度依赖性的致畸和胚胎致死效应。在大鼠胎儿中发现了与治疗相关的畸形,主要是额外的或原始的颈椎肋和泌尿或心血管缺陷。在后代小鼠中发现了外脑畸形和腭裂的增加。在暴露于甲醇的小鼠骨髓中没有观察到微核的增加。甲醇在体外没有诱导中国仓鼠肺V79细胞的微核。甲醇在小鼠淋巴瘤试验中是致突变的,在Basc试验中,或在家蝇,性连锁,隐性致死突变试验中是致突变的。用甲醇处理叙利亚金仓鼠胚胎细胞的原代培养没有导致细胞转化。在Ames试验中,无论有无代谢激活,甲醇对鼠伤寒沙门氏菌TA97、TA98、TA1535、TA 1537和TA1538菌株都不是致突变的。在使用代谢激活的情况下,使用鼠伤寒沙门氏菌TA102菌株得到了不确定的结果。在使用各种大肠杆菌WP2菌株的DNA修复试验和裂殖酵母前向突变试验中,甲醇不是致突变的。生态毒性研究:甲醇对水生生物的毒性较低,环境暴露于甲醇的影响不太可能观察到,除非发生泄漏。
IDENTIFICATION AND USE: Methanol is a clear colorless liquid, used in hydraulic fracturing mixtures. It is also used as dehydrator of natural gas; fuel for utility plants (methyl fuel); feedstock for manufacture of synthetic proteins by continuous fermentation; source of hydrogen for fuel cells, home-heating-oil extender. HUMAN STUDIES: Humans (and non-human primates) are uniquely sensitive to methanol poisoning. Nearly all of the available information on methanol toxicity in humans relates to the consequences of acute rather than chronic exposures. A vast majority of poisonings involving methanol have occurred from drinking adulterated beverages and from methanol-containing products. The minimum lethal dose of methanol in the absence of medical treatment is between 0.3 and 1 g/kg. Wide interindividual variability of the toxic dose is a prominent feature in acute methanol poisoning. Two important determinants of human susceptibility to methanol toxicity appear to be (1) concurrent ingestion of ethanol, which slows the entrance of methanol into the metabolic pathway, and (2) hepatic folate status, which governs the rate of formate detoxification. The symptoms and signs of methanol poisoning, which may not appear until after an asymptomatic period include visual disturbances, nausea, abdominal and muscle pain, dizziness, weakness and disturbances of consciousness ranging from coma to clonic seizures. Visual disturbances range from mild photophobia and misty or blurred vision to markedly reduced visual acuity and complete blindness. In extreme cases death results. The principal clinical feature is severe metabolic acidosis of the anion-gap type. ANIMAL STUDIES: The rate of metabolic detoxification, or removal of formate is vastly different between rodents and primates and is the basis for the dramatic differences in methanol toxicity observed between rodents and primates. The acute and short term toxicity of methanol varies greatly between different species, toxicity being highest in species with a relatively poor ability to metabolize formate. In such cases of poor metabolism of formate, fatal methanol poisoning occurs as a result of metabolic acidosis and neuronal toxicity, whereas, in animals that readily metabolize formate, consequences of CNS depression (coma, respiratory failure) are usually the cause of death. Overall methanol has a low acute toxicity to non-primate animals. In the rabbit, methanol is a moderate irritant to the eye. It was not skin sensitizing. The association between methanol exposure and lymphoma in some animal studies is weak, and is better interpreted as due to confounding factors or to a mechanism not relevant in humans. The inhalation of methanol by pregnant rodents throughout the period of embryogenesis induces a wide range of concentration-dependent teratogenic and embryolethal effects. Treatment-related malformations, primarily extra or rudimentary cervical ribs and urinary or cardiovascular defects, were found in fetuses of rats. Increased incidences of exencephaly and cleft palate were found in the offspring of mice. No increase in micronuclei was observed in the bone marrow of mice exposed to methanol. Methanol did not induce micronuclei in Chinese hamster lung V79 cells in vitro. Methanol was mutagenic in the mouse lymphoma assay, in a Basc test, or in Drosophila, sex-linked, recessive lethal mutation assay. Treatment of primary cultures of Syrian golden hamster embryo cells with methanol did not lead to cell transformation. Methanol was not mutagenic to Salmonella strains TA97, TA98, TA1535, TA 1537, and TA1538 in Ames tests with or without metabolic activation. Equivocal results were obtained with Salmonella strain TA102 in the presence of metabolic activation. Methanol was not mutagenic in a DNA-repair test using various strains of E. coli WP2 and in a forward mutation assay using Schizosaccharomyces pombe. ECOTOXICITY STUDIES: Methanol is of low toxicity to aquatic organisms, and effects due to environmental exposure to methanol are unlikely to be observed, except in the case of a spill.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
甲醇在眼中的目标是视网膜,尤其是视盘和视神经。由于线粒体内的细胞色素氧化酶活性受到抑制,导致ATP减少,穆勒细胞和杆状细胞及锥状细胞在功能和结构上发生改变。(T10)
The target of methanol in the eye is the retina, specifically the optic disk and optic nerve. Muller cells and rod and cone cells are altered functionally and structurally, because cytochrome oxidase activity in mitochondria is inhibited, resulting in a reduction in ATP. (T10)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌物分类
对人类不具有致癌性(未被国际癌症研究机构IARC列名)。
No indication of carcinogenicity to humans (not listed by IARC).
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 健康影响
急性甲醇中毒在人类中表现为12小时到24小时的无症状期,随后出现甲酸血症、眼毒性、昏迷,在极端情况下可能导致死亡。视觉障碍在摄入后18小时到48小时之间发展,症状从轻微的光过敏和视力模糊到明显降低的视力和完全失明不等。
Acute methanol poisoning in humans is characterized by an asymptomatic period of 12h to 24h followed by formic acidemia, ocular toxicity, coma, and in extreme cases death. Visual disturbances develop between 18h to 48h after ingestion and range from mild photophobia and blurred vision to markedly reduced visual acuity and complete blindness. (T10)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 暴露途径
这种物质可以通过吸入、皮肤接触和摄入被身体吸收。
The substance can be absorbed into the body by inhalation, through the skin and by ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
吸收、分配和排泄
甲醇经吸入或摄入后会被吸收,而在职业环境中,吸入是主要的吸收途径。关于甲醇通过皮肤接触的潜在风险,目前尚无共识。甲醇会根据组织的相对含水量进行均匀分布。
Methanol is absorbed following inhalation or ingestion, and inhalation is the major route of absorption in the occupational environment. There is no agreement on the potential risk of dermal exposure to methanol. Methanol is uniformly distributed according to the relative water content of the tissue.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
甲基酒精可轻易从消化道和呼吸道吸收。
Methyl alcohol is readily absorbed from GI and respiratory tracts.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
甲醇从胃肠道的吸收率大约为... 8.4 毫克/平方厘米/小时。达到最高血清浓度的时间... 在摄入后... 为30-60分钟。
The rate of absorption /of methanol from the gastrointestinal tract is approximately/... 8.4 mg/sq cm/hr. Time to peak serum concentration... after ingestion /is/... 30-60 minutes for methanol... .
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在人体经口服和吸入实验条件下,摄入剂量为71-84毫克/公斤时,2-3小时后血液中的水平为4.7-7.6毫克/100毫升。尿液/血液浓度比大致保持在1.3。吸入500-1000 ppm的浓度,持续3-4小时,尿液中浓度约为1-3毫克/100毫升。
... Under ... experimental conditions in man following ingestion and inhalation, dosages of 71-84 mg/kg orally resulted in blood levels of 4.7-7.6 mg/100 mL ... 2-3 hr afterward. urine/blood concentration ratio was ... constant at about 1.3. ... Inhalation of ... 500-1000 ppm ... for ... 3-4 hr gave urine concentration of about 1-3 mg/100 mL. ...
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 职业暴露等级:
    A
  • 职业暴露限值:
    TWA: 200 ppm (260 mg/m3), STEL: 250 ppm (325 mg/m3) [skin]
  • TSCA:
    Yes
  • 危险等级:
    3
  • 立即威胁生命和健康浓度:
    6,000 ppm
  • 危险品标志:
    Xn,F,T
  • 安全说明:
    S16,S36/37,S45,S7
  • 危险类别码:
    R20/21/22,R36/38,R40,R36,R10,R11,R23/24/25,R39/23/24/25,R68/20/21/22,R23/25
  • WGK Germany:
    1
  • 海关编码:
    2905110000
  • 危险品运输编号:
    UN 1230
  • 危险类别:
    3
  • RTECS号:
    PC1400000
  • 包装等级:
    II
  • 危险标志:
    GHS02,GHS06,GHS08
  • 危险性描述:
    H225,H301 + H311 + H331,H370
  • 危险性防范说明:
    P210,P280,P302 + P352 + P312,P304 + P340 + P312,P370 + P378,P403 + P235
  • 储存条件:
    储存注意事项: - 储存于阴凉、通风良好的专用库房内,远离火种、热源。 - 库温不宜超过37℃,保持容器密封。 - 应与氧化剂、酸类、碱金属等分开存放,切忌混储。 - 采用防爆型照明和通风设施。 - 禁止使用易产生火花的机械设备和工具。 - 储区应备有泄漏应急处理设备和合适的收容材料。

SDS

SDS:dca04a5eabd074f3e7f9b33a3cbf5138
查看
国标编号: 32058
CAS: 67-56-1
中文名称: 甲醇
英文名称: methyl alcohol;Methanol
别 名: 木酒精
分子式: CH 4 O;CH 3 OH
分子量: 32.04
熔 点: -97.8℃ 沸点:64.8℃
密 度: 相对密度(水=1)0.79;
蒸汽压: 11℃
溶解性: 溶于水,可混溶于醇、醚等多数有机溶剂
稳定性: 稳定
外观与性状: 无色澄清液体,有刺激性气味
危险标记: 7(易燃液体)
用 途: 主要用于制甲醛、香精、染料、医药、火药、防冻剂等

2.对环境的影响:

一、健康危害

侵入途径:吸入、食入、经皮吸收。 健康危害:对中枢神经系统有麻醉作用;对视神经和视网膜有特殊选择作用,引起病变;可致代谢性酸中毒。 急性中毒:短时大量吸入出现轻度眼及上呼吸道刺激症状(口服有胃肠道刺激症状);经一段时间潜伏期后出现头痛、头晕、乏力、眩晕、酒醉感、意识朦胧、谵妄,甚至昏迷。视神经及视网膜病变,可有视物模糊、复视等,重者失明。代谢性酸中毒时出现二氧化碳结合力下降、呼吸加速等。 慢性影响:神经衰弱综合征,植物神经功能失调,粘膜刺激,视力减退等。皮肤出现脱脂、皮炎等。

二、毒理学资料及环境行为

毒性:属中等毒类。 急性毒性:LD505628mg/kg(大鼠经口);15800mg/kg(兔经皮);LC5082776mg/kg,4小时(大鼠吸入);人经口5~10ml,潜伏期8~36小时,致昏迷;人经口15ml,48小时内产生视网膜炎,失明;人经口30~100ml中枢神经系统严重损害,呼吸衰弱,死亡。 亚急性和慢性毒性:大鼠吸入50mg/m3,12小时/天,3个月,在8~10周内可见到气管、支气管粘膜损害,大脑皮质细胞营养障碍等。 致突变性:微生物致突变:啤酒酵母菌12pph。DNA抑制:人类淋巴细胞300mmol/L。 生殖毒性:大鼠经口最低中毒浓度(TDL0):7500mg/kg(孕7~19天),对新生鼠行为有影响。大鼠吸入最低中毒浓度(TCL0):20000ppm(7小时),(孕1~22天),引起肌肉骨骼、心血管系统和泌尿系统发育异常。

危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。与氧化剂接触发生化学反应或引起燃烧。在火场中,受热的容器有爆炸危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳。


3.现场应急监测方法:

气体检测管法; 便携式气相色谱法;直接进水样气相色谱法气体速测管(北京劳保所产品)


4.实验室监测方法:
监测方法 来源 类别
溶剂解吸气相色谱法 WS/T143-1999 作业场所空气
气相色谱法 HJ/T33-1999 固定污染源排气
变色酸比色法;
气相色谱法
《空气中有害物质的测定方法》(第二版),杭士平编 空气
气相色谱法 《水质分析大全》张宏陶主编 水质
品红亚硫酸法 《化工企业空气中有害物质测定方法》,化学工业出版社 化工企业空气

5.环境标准:
中国(TJ36-79) 车间空气中有害物质的最高容许浓度 50mg/m 3
中国(TJ36-79) 居住区大气中有害物质的最高容许浓度 3.00mg/m 3 (一次值)
1.00mg/m 3 (日均值)
中国(GB16297-1996) 大气污染物综合排放标准 ①最高允许排放浓度(mg/m 3 ):
190(表2);220(表1)
②最高允许排放速率(kg/h):
二级5.1~100(表2);6.1~130(表1)
三级7.8~170(表2);9.2~200(表1)
③无组织排放监控浓度限值:
12mg/m 3 (表2);15mg/m 3 (表1)


前苏联(1978) 地面水中有害物质最高允许浓度 3.0mg/L
前苏联(1978) 渔业用水中最高允许浓度 0.1mg/L
前苏联 污水中有害物质最高允许浓度 20mg/L
嗅觉阈浓度 140mg/m 3


6.应急处理处置方法:

一、泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。不要直接接触泄漏物。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内。回收或运至废物处理场所处置。

二、防护措施

呼吸系统防护:可能接触其蒸气时,应该佩戴过滤式防毒面罩(半面罩)。紧急事态抢救或撤离时,建议佩戴空气呼吸器。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防静电工作服。 手防护:戴橡胶手套。 其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。实行就业前和定期的体检。

三、急救措施

皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐,用清水或1%硫代硫酸钠溶液洗胃。就医。

灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:抗溶性泡沫、干粉、二氧化碳、砂土。


制备方法与用途

根据提供的信息,我们可以总结出甲醇的以下几点重要性质和用途:

物理化学性质:
  • 外观:无色透明液体。
  • 气味:略带乙醇气味(纯品),粗品刺鼻难闻。
  • 溶解性:能与水、乙醇、乙醚、苯、酮类及大多数有机溶剂混溶。
主要用途:
  1. 作为溶剂和萃取剂:用于各种化学合成反应,如分离硫酸钙和硫酸镁,溴化锶和溴化钡的分离等。
  2. 制备甲醛:是生产甲醛的重要原料之一。
  3. 有机合成中的甲基化剂:参与多种有机化合物的合成过程。
  4. 燃料添加剂:用于制造汽油辛烷值添加剂甲基叔丁基醚,以及作为汽车替代燃料使用(如甲醇汽油)。
  5. 医药与农药领域:是某些药物及杀虫剂、杀螨剂的原料。
化学生产方法:
  • 工业上主要通过一氧化碳加压催化加氢的方法合成甲醇。此过程通常包括以下几个步骤:造气、合成净化、甲醇合成和粗甲醇精馏等。
  • 另一种方法是从天然气或碳氢化合物中部分氧化获得。
安全与防护:
  • 作为一种易燃液体,甲醇需注意防火防爆措施。
  • 职业卫生标准要求工作场所空气中甲醇浓度的短期接触极限(STEL)不超过310毫克/立方米。
法规限制:
  • GB 2760-96规定了甲醇在食品加工中的使用条件,允许作为加工助剂应用于特定食品生产过程中,并应在最终产品中去除或达到规定的残留量标准。如香辛料油树脂(最高50mg/kg)、酒花抽提物(最高2.2mg/kg)等。
急性毒性及刺激性数据:
  • 根据提供的信息,甲醇对大鼠和小鼠的口服半数致死剂量分别为5628毫克/公斤和7300毫克/公斤。
  • 对眼睛具有中度刺激作用;皮肤接触也显示出一定的刺激性。

综上所述,虽然甲醇在多个领域有着广泛的应用价值,但由于其潜在的危害性,在使用过程中必须严格遵守相关安全标准与操作规程。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    甲醇四氯化碳氯磺酸 作用下, 生成 硫酸二甲酯
    参考文献:
    名称:
    DE193830
    摘要:
    公开号:
  • 作为产物:
    描述:
    甲酸异丙酯 在 carbonylhydrido(tetrahydroborato)[bis(2-diphenylphosphinoethyl)-amino]ruthenium(II) 、 potassium carbonate 作用下, 以 异丙醇 为溶剂, 反应 24.0h, 以99%的产率得到甲醇
    参考文献:
    名称:
    有机形态和环状碳酸酯的转移加氢:由二氧化碳制甲醇的替代途径
    摘要:
    使用容易获得的钌催化剂首次实现了有机甲酸酯和环状碳酸酯的转移加氢。使用无毒且经济的2-丙醇作为溶剂和氢源,而无需在高压下使用易燃的H 2气体。该方法提供了在温和条件下从二氧化碳生产甲醇的间接策略,以及在操作上简单且对环境无害的方式来减少甲酸盐和碳酸盐。
    DOI:
    10.1021/cs501133m
  • 作为试剂:
    描述:
    香紫苏内酯吡啶甲醇正丁基锂氯化亚砜草酰氯双氧水sodium hexamethyldisilazanepotassium carbonate 作用下, 以 四氢呋喃乙醚二氯甲烷二甲基亚砜 为溶剂, 反应 104.25h, 生成
    参考文献:
    名称:
    一种半日花烷型二萜的合成方法
    摘要:
    本发明公开了一种半日花烷型二萜的合成方法,以香紫苏内酯作为反应底物与有机锂试剂反应,得到的中间体1与乙酸酐、过氧化氢、马来酸酐形成的第一反应底物反应,生成的中间体2与吡啶和氯化亚砜混合反应,生成中间体3,再与碳酸钾反应,得到中间体4,中间体4与草酰氯和二甲基亚砜的反应物反应,加入三乙胺搅拌,得到的中间体5与第二反应底物混合反应,得到中间体6,中间体6、六甲基二硅基氨基钠和二硫化碳顺次混合于四氢呋喃中,加入碘甲烷充分反应,得到中间体7,在惰性气体的保护下,将中间体7与偶氮二异丁腈和三正丁基锡烷加热反应,得到的产物经过纯化得到半日花烷型二萜产物。该合成方法合成步骤短、反应条件温和、操作简单。
    公开号:
    CN118063421A
点击查看最新优质反应信息

文献信息

  • [EN] BENZAMIDE OR BENZAMINE COMPOUNDS USEFUL AS ANTICANCER AGENTS FOR THE TREATMENT OF HUMAN CANCERS<br/>[FR] COMPOSÉS BENZAMIDE OU BENZAMINE À UTILISER EN TANT QU'ANTICANCÉREUX POUR LE TRAITEMENT DE CANCERS HUMAINS
    申请人:UNIV TEXAS
    公开号:WO2017007634A1
    公开(公告)日:2017-01-12
    The described invention provides small molecule anti-cancer compounds for treating tumors that respond to cholesterol biosynthesis inhibition. The compounds selectively inhibit the cholesterol biosynthetic pathway in tumor-derived cancer cells, but do not affect normally dividing cells.
    所描述的发明提供了用于治疗对胆固醇生物合成抑制作出反应的肿瘤的小分子抗癌化合物。这些化合物选择性地抑制肿瘤来源的癌细胞中的胆固醇生物合成途径,但不影响正常分裂的细胞。
  • Expanding the Scope of Hypervalent Iodine Reagents for Perfluoroalkylation: From Trifluoromethyl to Functionalized Perfluoroethyl
    作者:Václav Matoušek、Jiří Václavík、Peter Hájek、Julie Charpentier、Zsófia E. Blastik、Ewa Pietrasiak、Alena Budinská、Antonio Togni、Petr Beier
    DOI:10.1002/chem.201503531
    日期:2016.1.4
    A series of new hypervalent iodine reagents based on the 1,3‐dihydro‐3,3‐dimethyl‐1,2‐benziodoxole and 1,2‐benziodoxol‐3‐(1H)‐one scaffolds, which contain a functionalized tetrafluoroethyl group, have been prepared, characterized, and used in synthetic applications. Their corresponding electrophilic fluoroalkylation reactions with various sulfur, oxygen, phosphorus, and carbon‐centered nucleophiles
    基于1,3-二氢-3,3-二甲基-2-1,2-苯并恶唑和1,2-苯并恶唑-3-(1 H)-one骨架的一系列新的高价碘试剂,它们含有功能化的四氟乙基已经制备,表征并用于合成应用。它们与各种硫,氧,磷和以碳为中心的亲核试剂进行相应的亲电氟烷基化反应,可得到具有连接两个功能部分的四氟乙烯单元的产物。一个相关的λ 3含有荧光团的碘已显示在温和条件下与半胱氨酸衍生物反应,生成硫醇标记的产物,该产物在存在过量硫醇的情况下是稳定的。因此,这些新试剂作为快速,不可逆和选择性硫醇生物结合的工具,在化学生物学中显示出巨大的潜力。
  • A convergent approach to polycyclic aromatic hydrocarbons
    作者:Raphaël F. Guignard、Samir Z. Zard
    DOI:10.1039/c1cc15095b
    日期:——
    A new concise route to Polycyclic Aromatic Hydrocarbons (PAHs) through radical addition and cyclisation of xanthates is described.
    描述了一种通过黄原酸酯的自由基加成和环化反应合成多环芳烃(PAHs)的新简明路线。
  • [EN] TARGETED DELIVERY AND PRODRUG DESIGNS FOR PLATINUM-ACRIDINE ANTI-CANCER COMPOUNDS AND METHODS THEREOF<br/>[FR] ADMINISTRATION CIBLÉE ET CONCEPTIONS DE PROMÉDICAMENTS POUR COMPOSÉS ANTICANCÉREUX À BASE DE PLATINE ET D'ACRIDINE ET MÉTHODES ASSOCIÉES
    申请人:WAKE FOREST SCHOOL OF MEDICINE
    公开号:WO2013033430A1
    公开(公告)日:2013-03-07
    Acridine containing cispiaiin compounds have been disclosed that show greater efficacy against cancer than other cisplatin compounds. Methods of delivery of those more effective eisp!aiin compounds to the nucleus in cancer ceils is disclosed using one or more amino acids, one or more sugars, one or more polymeric ethers, C i^aikylene-phenyl-NH-C(0)-R.15, folic acid, av03 iniegriii RGD binding peptide, tamoxifen, endoxifen, epidermal growth factor receptor, antibody conjugates, kinase inhibitors, diazoles, triazol.es, oxazoies, erlotinib, and/or mixtures thereof; wherein R]§ is a peptide.
    含有环丙啶结构的吖啶类化合物已被披露,显示出比其他顺铂类化合物更有效地对抗癌症。使用一种或多种氨基酸、一种或多种糖、一种或多种聚合醚、C i^aikylene-phenyl-NH-C(0)-R.15、叶酸、av03整合RGD结合肽、他莫昔芬、恩多西芬、表皮生长因子受体、抗体结合物、激酶抑制剂、二唑类化合物、三唑类化合物、噁唑类化合物、厄洛替尼和/或它们的混合物将这些更有效的吖啶类化合物传递到癌细胞核中的方法被披露;其中R]§是一个肽。
  • MgI<sub>2</sub>-Mediated Chemoselective Cleavage of Protecting Groups: An Alternative to Conventional Deprotection Methodologies
    作者:Mathéo Berthet、Florian Davanier、Gilles Dujardin、Jean Martinez、Isabelle Parrot
    DOI:10.1002/chem.201501799
    日期:2015.7.27
    The scope of MgI2 as a valuable tool for quantitative and mild chemoselective cleavage of protecting groups is described here. This novel synthetic approach expands the use of protecting groups, widens the concept of orthogonality in synthetic processes, and offers a facile opportunity to release compounds from solid supports.
    在此描述了MgI 2作为定量和轻度化学选择性切割保护基的有价值工具的范围。这种新颖的合成方法扩大了保护基的使用范围,拓宽了合成过程中正交性的概念,并提供了从固体载体上释放化合物的简便机会。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台