Archaeal lipid adjuvants are synthesized by chemically coupling various carbohydrates or anionic polar groups to the free hydroxyl(s) of archaeal lipid cores. Chemically stable lipid cores such as saturated archaeol and caldarchaeol are obtained from appropriate Archaea. Archaeosome lipid vesicles are formulated from the synthetic lipids selected to serve as antigen carriers that target antigen-presenting cells and promote an appropriate immune response to the antigen.
Archaeal lipid adjuvants are synthesized by chemically coupling various carbohydrates or anionic polar groups to the free hydroxyl(s) of archaeal lipid cores. Chemically stable lipid cores such as saturated archaeol and caldarchaeol are obtained from appropriate Archaea. Archaeosome lipid vesicles are formulated from the synthetic lipids selected to serve as antigen carriers that target antigen-presenting cells and promote an appropriate immune response to the antigen.
36-Membered Macrocyclic Diether Lipid is Advantageous for Archaea to Thrive under the Extreme Thermal Environments
作者:Kenji Arakawa、Tadashi Eguchi、Katsumi Kakinuma
DOI:10.1246/bcsj.74.347
日期:2001.2
that the macrocyclic structure led to a decrease in the fluidity in the inter-membrane hydrophobic part more than in the membrane surface by limiting the motional freedom of the alkyl chains. The proton permeability was also significantly reduced by introducing a macrocyclic structure. Liposomal thermostability measurements using 6-carboxyfluorescein (CF) suggested that 36MPC formed liposomes with greater