摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

BOC-3-氨基苯丙氨酸 | 170157-55-8

中文名称
BOC-3-氨基苯丙氨酸
中文别名
N-BOC-3-氨基-L-苯丙氨酸
英文名称
L-Nα-Boc-3-aminophenylalanine
英文别名
t-Boc-3-amino-L-phenylalanine;(S)-3-(3-aminophenyl)-2-{[(tert-butoxy)carbonyl]amino}propanoic acid;Boc-3-amino-phenylalanine;(S)-3-(3-Aminophenyl)-2-((tert-butoxycarbonyl)amino)propanoic acid;(2S)-3-(3-aminophenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid
BOC-3-氨基苯丙氨酸化学式
CAS
170157-55-8
化学式
C14H20N2O4
mdl
——
分子量
280.324
InChiKey
IZHOFFXTZQKZCS-NSHDSACASA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    488.6±40.0 °C(Predicted)
  • 密度:
    1.213±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.8
  • 重原子数:
    20
  • 可旋转键数:
    6
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.43
  • 拓扑面积:
    102
  • 氢给体数:
    3
  • 氢受体数:
    5

安全信息

  • 危险性防范说明:
    P261,P280,P301+P312,P302+P352,P305+P351+P338
  • 危险性描述:
    H302,H315,H319,H335

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    BOC-3-氨基苯丙氨酸三乙基硅烷正丁基锂四甲基乙二胺1-羟基苯并三唑盐酸-N-乙基-Nˊ-(3-二甲氨基丙基)碳二亚胺三乙胺N,N-二异丙基乙胺 作用下, 以 四氢呋喃正己烷二氯甲烷 为溶剂, 反应 23.08h, 生成 benzyl N-[({3-[2-amino-3-(1,3-benzothiazol-2-yl)-3-oxopropyl]phenyl}amino)({[(benzyloxy)carbonyl]amino})methylidene]carbamate
    参考文献:
    名称:
    基于二肽的hepsin抑制剂与Arg生物电子等排体的构效关系研究
    摘要:
    Hepsin 是一种 II 型跨膜丝氨酸蛋白酶 (TTSP),与细胞增殖相关,在包括前列腺癌 (PCa) 在内的多种癌症中过度表达。由于其在癌症进展和转移中的重要作用,hepsin 是一种有吸引力的蛋白质,可作为 PCa 的潜在治疗和诊断生物标志物。基于已报道的基于 Leu-Arg 二肽的 hepsin 抑制剂,我们进行了结构修饰并确定了体外 hepsin 和 Matriptase 抑制活性。综合构效关系研究表明,基于对胍基苯丙氨酸的二肽类似物 22a 表现出强烈的 hepsin 抑制活性(K i= 50.5 nM) 和比 Matriptase 高 22 倍的 hepsin 选择性。化合物 22a 可能是基于二肽的 hepsin 抑制剂结构优化的原型分子。
    DOI:
    10.1016/j.bioorg.2020.104521
  • 作为产物:
    描述:
    间硝基氯化苄 在 palladium on activated charcoal 盐酸sodium hydroxide氯化亚砜氢气sodium ethanolate溶剂黄146 作用下, 以 乙醇乙腈叔丁醇 为溶剂, -20.0~42.0 ℃ 、289.58 kPa 条件下, 反应 54.5h, 生成 BOC-3-氨基苯丙氨酸
    参考文献:
    名称:
    Gonadotropin-Releasing Hormone Antagonists: Novel Members of the Azaline B Family
    摘要:
    A series of antagonists of gonadotropin-releasing hormone (GnRH) homologous to azaline B ([Ac-DNal(1),DCpa(2),DPal(3),Aph(5)(Atz),DAph(6)(Atz),ILys(8),DAla(10)]GnRH) was synthesized, characterized, and tested in a rat antiovulatory assay (AOA). Selected analogues were also tested in both an in vitro dispersed rat pituitary cell culture assay for inhibition of GnRH-stimulated luteinizing hormone release and an in. vitro histamine release assay. The duration of action of some of the most potent and safest analogues in those assays was also determined in the castrated male rat in order to measure the extent (efficacy and duration of action) of inhibition of luteinizing hormone release. Structurally, this series of analogues has novel substitutions (X and Y) in the structure of the azaline B precursor: [Ac-DNal(1),DCpa(2),DPal(3),-Aph(5)(X),DAph(6)(Y),ILys(8),DAla(10)]GnRH. These substitutions were designed to confer increased hydrophilicity as compared to that of azaline B (determined by relative retention times on a C-18 reverse phase column using a triethylammonium phosphate buffer at pH 7.3) or to make them more easily accessible synthetically. Some bulky substituents were introduced in order to probe the spatial limitations of the receptor's cavity. These substitutions include acylated 4-aminophenylalanine at positions 5 and/or 6 (29 analogues), N-alpha-methylated backbone substitutions (six analogues), N-omega-isopropylaminophenylalanine at position 8, and hydrophilic amino acids at position 1. Out of 20 novel analogues tested for long duration position 8, and hydrophilic amino acids at position 1. Out of 20 novel analogues tested for long duration of action in this series, only seven ([Ac-DNal(1),DCpa(2),DPal(3),Aph(5),DAph(6),ILys(8),DAla(10)]GnRH, [Ac-DNal(1),DCpa(2),DPal(3), Aph(5)(For),DAph(6)(For), ILys(8),DAla(10)]GnRH, [Ac-DNal(1),DCpa(2),DPal(3),Aph(5)(Ac),DAph(6)(Ac),- ILys(8),DAla(10)]GnRH (acyline), [Ac-DNal(1),DCpa(2),DPal(3),Aph(5)(Pio),DAph(6)(Pio),ILys(8,)DAla(10)]GnRh, [Ac-DNal(1),DCpa(2),DPal(3),Aph(5)(Atz),DAph(6)(Ac),ILys(8),DAla(10)]GnRH, [Ac-DNalDCpa(2),DPal(3),Aph(5)(Atz-beta Ala),DAph(6)(Atz- beta Ala),ILys(8),DAla(10)]GnRH, [Ac-DNal(1),DCpa2,DPal(3),Aph(5)(Atz-Gab),DAph(6)(Atz-Gab),ILys(8),DAla(10)]GnRH) had relative potencies and/or duration of action comparable to those of azaline B. The others were one-half to one-tenth as effective as azaline B. N-alpha-Methylated backbone substitutions at position 5 yielded analogues that were significantly more hydrophilic presumably because of the breakage of the NH alpha-Tyr(5) to Arg(8)-CO hydrogen bond reported to stabilize a beta-turn encompassing residues 5-8 and which favored beta-sheet formation as shown earlier by Haviv et al.(2) This substitution resulted, however, in an increased potency in the histamine release assay and in significantly shorter duration of action.(3) Similarly, attempts at replacing isopropyllysine in position 8 by either isopropyl-4-aminophenylalanine or isopropyl-4(aminomethyl)phenylalanine resulted in loss of potency in the AOA.Changes in chirality at position 1 or 10 resulted in analogues that were one-tenth and one-half as potent, respectively, as acyline. Introduction of a relatively hydrophilic acetylated residue in position 1 (Ac-4-aminophenylalanine, Ac-2-quinolylalanine, Ac-3-quinolylalanine) also resulted in potent analogues in the AOA in the latter two cases (yet very short acting in the case of ([Ac-D2Qal(1),DCpa(2),DPal(3),Aph(5)(Atz),DAph(6)(Atz),ILys(8),DAla(10)]-GnRH). Introduction of either mesityl, (2-chlorophenyl)isourea, or (3-chlorophenyl)isourea as a substituent on the 4-amino function at residues 5 and 6 of the azaline B precursor was considerably less successful. In this article, we describe in details, improved synthetic protocols for all novel amino acis, N alpha-methylation of amino acids on the resin, and elimination of the undesired N omega-methylation of pyridylalanine at position 3 as the result of base treatment (piperidine or hydrazine) during the deprotection of the Fmoc group or formation of the triazole moiety in the presence of CH2Cl2.
    DOI:
    10.1021/jm00014a017
点击查看最新优质反应信息

文献信息

  • Targeted efflux transporter inhibitors – A solution to improve poor cellular accumulation of anti-cancer agents
    作者:Johanna Huttunen、Mikko Gynther、Kristiina M. Huttunen
    DOI:10.1016/j.ijpharm.2018.08.047
    日期:2018.10
    Abstract Efflux transporters function as vacuum cleaners of xenobiotics and therefore they hinder drugs to reach their targets at effective enough concentrations. Efflux pump inhibitors can be used to improve the cell accumulation of drugs, however all the current inhibitors lack selectivity towards cancer cells. lType amino acid transporter 1 (LAT1), which is expressed in many types of cancer cells
    图形化的抽象图。没有可用的字幕。摘要外排转运蛋白可作为异源生物的真空吸尘器,因此会阻碍药物以足够有效的浓度达到目标。外排泵抑制剂可用于改善药物的细胞蓄积,但是目前所有的抑制剂都缺乏对癌细胞的选择性。在许多类型的癌细胞中表达的l型氨基酸转运蛋白1(LAT1)可通过将抑制剂转化为利用LAT1的前药来将外排转运蛋白的抑制剂靶向这些细胞。在这项研究中,我们制备了5种利用LAT1的外排泵抑制剂丙磺舒(PRB)。所有新化合物主要通过LAT1转运到人乳腺癌细胞(MCF-7)中。这些化合物还可以与多种抗性蛋白(MRP)相互作用,P-糖蛋白(P-gp)或抗乳腺癌蛋白(BCRP)可使抗癌剂长春碱(VBL)的细胞蓄积显着增加(3-4倍)。因此,通过将72小时后的细胞生长从100%(仅VBL处理)降低到48-75%(联合处理),可以提高VBL的抗增殖功效。但是,在其他化疗药物甲氨蝶呤MTX)中未发现相同的现象。
  • L-Type Amino Acid Transporter 1 Enables the Efficient Brain Delivery of Small-Sized Prodrug across the Blood–Brain Barrier and into Human and Mouse Brain Parenchymal Cells
    作者:Ahmed B. Montaser、Juulia Järvinen、Susanne Löffler、Johanna Huttunen、Seppo Auriola、Marko Lehtonen、Aaro Jalkanen、Kristiina M. Huttunen
    DOI:10.1021/acschemneuro.0c00564
    日期:2020.12.16
    utilized to improve the oral, hepatic, and renal (re)absorption. In the brain, however, the transporter-mediated drug delivery has not yet been fully achieved due to the complexity of the blood–brain barrier (BBB). Because L-type amino acid transporter 1 (LAT1) is a good candidate to improve the brain delivery, we developed here four novel LAT1-utilizing prodrugs of four nonsteroidal anti-inflammatory drugs
    长期以来,膜转运蛋白一直被用来改善口腔,肝脏和肾脏(再)的吸收。然而,由于血脑屏障(BBB)的复杂性,在脑中转运蛋白介导的药物递送尚未完全实现。由于L型氨基酸转运蛋白1(LAT1)是改善脑部输送的良好候选者,我们在这里开发了四种非甾体类抗炎药的四种利用LAT1的新型前药。结果,所有的前药都能够穿过血脑屏障并定位到脑细胞中。水杨酸SA)在大脑中的吸收量提高了五倍,不仅遍及小鼠BBB,而且进入了培养的小鼠和人脑细胞。萘普生前药也被有效地转移到小鼠大脑中,从而减少了外围暴露,但是萘普生从前药的脑释放没有改善。相反,氟比洛芬前体药物的高血浆蛋白结合和布洛芬前体药物在小鼠血液中的过早生物转化阻碍了有效的脑部递送。因此,母体药物的结构影响了利用LAT1的前药的成功脑部传递,而SA的小尺寸利用LAT1的前药构成了成功地将其母体药物跨小鼠BBB输送到培养的小鼠的成功模型。和人类的脑细胞。
  • Large Amino Acid Transporter 1 (LAT1) Prodrugs of Valproic Acid: New Prodrug Design Ideas for Central Nervous System Delivery
    作者:Lauri Peura、Kalle Malmioja、Krista Laine、Jukka Leppänen、Mikko Gynther、Antti Isotalo、Jarkko Rautio
    DOI:10.1021/mp2001878
    日期:2011.10.3
    system (CNS) drug delivery is a major challenge in drug development because the blood–brain barrier (BBB) efficiently restricts the entry of drug molecules into the CNS at sufficient amounts. The brain uptake of poorly penetrating drugs could be improved by utilizing the transporters at the BBB with a prodrug approach. In this study, we designed four phenylalanine derivatives of valproic acid and studied
    中枢神经系统(CNS)的药物输送是药物开发中的主要挑战,因为血脑屏障(BBB)有效地限制了足够量的药物分子进入CNS。通过使用前药方法在血脑屏障使用转运蛋白可以改善对渗透性较差药物的大脑摄取。在这项研究中,我们设计了丙戊酸的四种苯丙酸衍生物,并研究了它们在中枢神经系统递送中利用大型氨基酸转运蛋白1(LAT1)的能力,目的是证明间位取代的苯丙酸前药以更高的亲和力与LAT1结合具有对位取代衍生物的亲和力。所有前药均通过LAT1原位通过BBB载体介导大鼠脑灌注。首次,我们引入了一种新型的间位取代的苯丙酸类似物,与对位取代的衍生物相比,该化合物将LAT1亲和力提高了10倍,更重要的是,大鼠大脑对前药的吸收提高了2倍。因此,我们表征了利用转运蛋白介导的前药方法进行中枢神经系统药物递送的新前药设计思想。
  • L-type amino acid transporter 1 utilizing prodrugs of ferulic acid revealed structural features supporting the design of prodrugs for brain delivery
    作者:Elena Puris、Mikko Gynther、Johanna Huttunen、Seppo Auriola、Kristiina M. Huttunen
    DOI:10.1016/j.ejps.2019.01.002
    日期:2019.3
    ARPE-19 cells. However, the presence of an ester linker between the prodrug and the parent drug promoted favorable bioconversion properties in human in comparison to mouse tissues in vitro i.e. the ester prodrug showed higher stability in human plasma (75% of intact prodrug in 5 h) and liver S9 subcellular fraction (181 min) in comparison to mouse plasma (t½ 2.6 min) and liver S9 fraction (t½ 23.3 min)
    阿魏酸(FA)是一种天然抗氧化剂,已显示出对付阿尔茨海默氏病的某些潜在益处。然而,由于其血脑屏障(BBB)渗透性差和生物利用度低,FA在治疗阿尔茨海默氏病方面的临床应用受到了限制。在本研究中,我们应用了L型氨基酸转运蛋白(LAT1)介导的前药方法,将FA递送到小鼠脑中,并合成了三种新颖的利用LAT1的FA前药。我们使用先前提出的方法开发了利用转运蛋白的前药,并研究了它们在ARPE-19细胞中通过LAT1在体外的细胞摄取,在小鼠体内进行原位灌注的BBB渗透以及在小鼠单次ip注射后的药代动力学。并将结果与​​我们之前使用LAT1的前药的结构-药代动力学关系分析进行比较。此外,我们评估了小鼠和人类血浆以及肝脏S9亚细胞级分中酯基前药的生物转化率之间的种间差异。已发现,具有芳香环的酰胺基前药有效结合至LAT1,并利用转运蛋白进行体外细胞摄取,并在小鼠体内进行原位灌注后穿过BBB。另外,将具有直接结
  • Ligand-Based Design of Selective Peptidomimetic uPA and TMPRSS2 Inhibitors with Arg Bioisosteres
    作者:Patrick Müller、Collin Zimmer、Ariane Frey、Gideon Holzmann、Annabelle Carolin Weldert、Tanja Schirmeister
    DOI:10.3390/ijms25031375
    日期:——
    dysregulated. Another member of this protease class that received attention during the SARS-CoV 2 pandemic is TMPRSS2. It is a transmembrane serine protease, which enables cell entry of the coronavirus by processing its spike protein. A variety of different inhibitors have been published against both proteases. However, the selectivity over other trypsin-like serine proteases remains a major challenge. In
    蛋白酶丝氨酸蛋白酶参与许多重要的生理过程,例如血液凝固和细胞外基质的重塑。另一方面,它们也与病理状况有关。尿激酶-纤溶酶原激活剂(uPA)参与组织重塑,当其过度表达和失调时,可以增加各种癌症类型的转移行为。该蛋白酶类中另一个在 SARS-CoV 2 大流行期间受到关注的成员是 TMPRSS2。它是一种跨膜丝氨酸蛋白酶,通过处理其刺突蛋白使冠状病毒能够进入细胞。针对这两种蛋白酶的多种不同抑制剂已被发表。然而,相对于其他胰蛋白酶丝氨酸蛋白酶的选择性仍然是一个重大挑战。在当前的研究中,我们用不同的生物电子等排体取代了拟肽抑制剂P1位点的精酸部分。酶抑制研究表明,P1 位点中的苯部分对 TMPRSS2 具有很强的亲和力,而环己基生物则能有效抑制 uPA。与其他结构相似且生理学上重要的蛋白酶相比,两种抑制剂均表现出高选择性。
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸