摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

二氯乙酸 | 79-43-6

中文名称
二氯乙酸
中文别名
二氯醋酸
英文名称
dichloro-acetic acid
英文别名
DCA;2,2-dichloroacetic acid;dichloroacetate;Dichloroacetic acid
二氯乙酸化学式
CAS
79-43-6
化学式
C2H2Cl2O2
mdl
MFCD00004223
分子量
128.943
InChiKey
JXTHNDFMNIQAHM-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    9-11 °C(lit.)
  • 沸点:
    194 °C(lit.)
  • 密度:
    1.56 g/mL at 25 °C (lit.)
  • 蒸气密度:
    4.5 (vs air)
  • 闪点:
    >230 °F
  • 溶解度:
    可溶于氯仿(少许)、甲醇(少许)
  • 介电常数:
    10.7(-7℃)
  • 暴露限值:
    ACGIH: TWA 0.5 ppm (Skin)
  • LogP:
    0.92
  • 物理描述:
    Dichloroacetic acid appears as a colorless crystalline solid melting at 49°F. Corrosive to metals and tissue.
  • 颜色/状态:
    Colorless crystalline solid melting at 49 °C
  • 气味:
    Pungent odor
  • 蒸汽密度:
    4.4 (NTP, 1992) (Relative to Air)
  • 蒸汽压力:
    0.179 mm Hg at 25 °C (extrapolated)
  • 亨利常数:
    8.38e-09 atm-m3/mole
  • 稳定性/保质期:
    1. 化学性质:酸性比氯乙酸强(Ka=5×10^-2),对水解比较稳定,但氯原子容易被取代。能生成各种衍生物,和氯乙酸类似。 2. 稳定性 [19]:稳定 3. 禁配物 [20]:强氧化剂、强碱、强还原剂 4. 避免接触的条件 [21]:受热 5. 聚合危害 [22]:不聚合 6. 分解产物 [23]:氯化氢
  • 分解:
    Hazardous decomposition products formed under fire conditions - Carbon oxides, hydrogen chloride gas.
  • 腐蚀性:
    Highly corrosive liquid that gives off acidic vapors.
  • 折光率:
    Index of refraction: 1.4658 at 20 °C/D
  • 解离常数:
    pKa = 1.26

计算性质

  • 辛醇/水分配系数(LogP):
    0.9
  • 重原子数:
    6
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    37.3
  • 氢给体数:
    1
  • 氢受体数:
    2

ADMET

代谢
二氯醋酸(DCA)抑制其自身的代谢,并通过谷胱甘肽S-转移酶zeta(GSTz)转化为乙醛酸。GSTz与马来酰乙酰醋酸异构酶相同,后者是一种酪氨酸分解酶,能将马来酰乙酰醋酸(MAA)转化为戊二酰乙酰醋酸,将马来酰乙酮(MA)转化为戊二酰乙酮。MAA和MA是烷化剂。用DCA处理长达五天的大鼠,其肝脏GSTz活性显著降低,MA的尿液排泄增加。当从人肝中获得的透析细胞质与DCA孵化时,GSTz活性不受影响。相比之下,DCA孵化抑制了来自大鼠的透析肝脏细胞质中的酶活性。将大鼠或人肝脏细胞质与MA孵化导致GSTz活性的剂量依赖性抑制。这些数据表明,暴露于DCA的人类或啮齿动物可能会积累MA和/或MAA,它们抑制GSTz,从而抑制DCA的生物转化。此外,DCA诱导的酪氨酸分解抑制可能是这种外源生物对人类和其他物种毒性的原因。
Dichloroacetate (DCA) inhibits its own metabolism and is converted to glyoxylate by glutathione S-transferase zeta (GSTz). GSTz is identical to maleylacetoacetate isomerase, an enzyme of tyrosine catabolism that converts maleylacetoacetate (MAA) to fumarylacetoacetate and maleylacetone (MA) to fumarylacetone. MAA and MA are alkylating agents. Rats treated with DCA for up to five days had markedly decreased hepatic GSTz activity and increased urinary excretion of MA. When dialyzed cytosol obtained from human liver was incubated with DCA, GSTz activity was unaffected. In contrast, DCA incubation inhibited enzyme activity in dialyzed hepatic cytosol from rats. Incubation of either rat or human hepatic cytosol with MA led to a dose dependent inhibition of GSTz. These data indicate that humans or rodents exposed to DCA may accumulate MA and/or MAA which inhibit(s) GSTz and, consequently, DCA biotransformation. Moreover, DCA-induced inhibition of tyrosine catabolism may account for the toxicity of this xenobiotic in humans and other species.
来源:Hazardous Substances Data Bank (HSDB)
代谢
谷胱甘肽转移酶zeta (GSTZ1-1) 催化一系列α-卤代烷酸酯的生物转化以及马来酰乙酰醋酸顺反异构化。... 本研究的目的是检查GSTZ1-1催化的二氯醋酸(DCA)的生物活化,包括DCA衍生的乙醛酸与氨基酸亲核试剂的反应以及通过LC/MS对加成物结构和动力学的表征。牛血清白蛋白与(1-(14)C)DCA衍生的标记结合需要GSTZ1-1和GSH,而与透析的大鼠肝细胞质蛋白的结合在GSH存在时增加。模型肽(antiflammin-2和IL-8抑制剂)的研究表明,乙醛酸而不是S-(α-氯羧甲基)谷胱甘肽是修饰氨基酸亲核试剂的反应性物种。观察到了乙醛酸的加成(+74 Da)和加成-消除(+56 Da)加成物。加成加成物(+74 Da)不能通过质谱完全表征,而加成-消除加成物(+56 Da)被表征为2-羧基-4-咪唑啉酮。2-羧基-4-咪唑啉酮是通过乙醛酸与antiflammin-2的N端氨基团快速平衡反应形成的中间碳酸胺(K(eq) = 0.63 mM(-1)),后者缓慢脱水生成中间亚胺(k(2) = 0.067小时(-1)),后者迅速环化生成2-羧基-4-咪唑啉酮。当反应物用硼氢化钠还原时,葡萄糖6-磷酸脱氢酶部分被乙醛酸失活,这可能表明乙醛酸与选择性赖氨酸ε-氨基团反应。本研究的结果表明,GSTZ1-1催化DCA生物活化成反应性代谢物乙醛酸。乙醛酸与细胞大分子的反应可能与DCA的多器官毒性有关。
... Glutathione transferase zeta (GSTZ1-1) catalyzes the biotransformation of a range of alpha-haloalkanoates and the cis-trans isomerization of maleylacetoacetate. ... The purpose of this study was to examine the GSTZ1-1-catalyzed bioactivation of dichloroacetic acid (DCA), including the reaction of DCA-derived glyoxylate with amino acid nucleophiles and the characterization of the structures and kinetics of adduct formation by LC/MS. The binding of (1-(14)C)DCA-derived label to bovine serum albumin required both GSTZ1-1 and GSH, whereas the binding to dialyzed rat liver cytosolic protein was increased in the presence of GSH. Studies with model peptides (antiflammin-2 and IL-8 inhibitor) indicated that glyoxylate, rather than S-(alpha-chlorocarboxymethyl)glutathione, was the reactive species that modified amino acid nucleophiles. Both addition (+74 Da) and addition-elimination (+56 Da) adducts of glyoxylic acid were observed. Addition adducts (+74 Da) could not be characterized completely by mass spectrometry, whereas addition-elimination adducts (+56 Da) were characterized as 2-carboxy-4-imidazolidinones. 2-Carboxy-4-imidazolidinones were formed by the rapid equilibrium reaction of glyoxylate with the N-terminal amino group of antiflammin-2 to give an intermediate carbinolamine (K(eq) = 0.63 mM(-1)), which slowly eliminated water to give an intermediate imine (k(2) = 0.067 hour(-1)), which rapidly cyclized to give the 2-carboxy-4-imidazolidinone. Glucose 6-phosphate dehydrogenase was inactivated partially by glyoxylate when reactants were reduced with sodium borodeuteride, which may indicate that glyoxylate reacts with selective lysine epsilon-amino groups. The results of the present study demonstrate that GSTZ1-1 catalyzes the bioactivation of DCA to the reactive metabolite glyoxylate. The reaction of glyoxylate with cellular macromolecules may be associated with the multiorgan toxicity of DCA.
来源:Hazardous Substances Data Bank (HSDB)
代谢
三氯乙烯(TCE)是啮齿动物中已知的致癌物,人们对其在人类中的潜在致癌性存在担忧。TCE的氧化代谢物,如二氯醋酸(DCA)和三氯醋酸(TCA),被认为对小鼠具有肝毒性和致癌性。谷胱甘肽结合的活性产物,如S-(1,2-二氯乙烯基)-L-半胱氨酸(DCVC)和S-(1,2-二氯乙烯基)谷胱甘肽(DCVG),与大鼠的肾毒性有关。最近,我们开发了一种新的分析方法,用于同时评估这些TCE代谢物在小体积生物样本中的含量。由于我们对TCE及其代谢物的药代动力学了解仍存在重要缺口,因此我们研究了在雄性B6C3F1小鼠单次口服2100 mg/kg TCE后,DCA、TCA、DCVG和DCVG的形成和消除的时间过程。根据全身浓度-时间数据,我们构建了多室模型,以探讨TCE代谢物形成和处置的动力学特性,以及DCA形成的来源。我们得出结论,TCE-氧化物很可能是DCA的来源。根据最佳拟合模型,口服TCE的生物利用度约为74%,小鼠每种代谢物的半衰期和清除率如下:DCA:0.6小时,0.081 mL/小时;TCA:12小时,3.80 mL/小时;DCVG:1.4小时,16.8 mL/小时;DCVC:1.2小时,176 mL/小时。在B6C3F1小鼠中,氧化代谢物的形成量远大于谷胱甘肽结合代谢物(大约3600倍差异)。此外,相对于TCA,DCA的产生非常有限,而大部分DCVG转化为DCVC。这些药代动力学研究为小鼠中四种关键TCE毒性生物标志物的动力学特性提供了见解,代表了可用于风险评估的新信息。
Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was approximately 74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 hr, 0.081 mL/hr; TCA: 12 hr, 3.80 mL/hr; DCVG: 1.4 hr, 16.8 mL/hr; DCVC: 1.2 hr, 176 mL/hr. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (approximately 3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.
来源:Hazardous Substances Data Bank (HSDB)
代谢
二氯乙酸(DCA)是一种潜在的环境危害物和一种研究中的药物。重复剂量的DCA会导致药物清除率降低,可能是通过抑制谷胱甘肽转移酶zeta1(GSTZ1),这是一种细胞质酶,能将DCA转化为乙醛酸。已知DCA会被线粒体摄取,在那里它抑制了丙酮酸脱氢酶激酶,这是它的主要药效学靶标。我们测试了线粒体是否也是DCA生物转化的场所的假设。在人类和老鼠的肝脏线粒体中检测到了免疫反应性的GSTZ1,其身份通过液相色谱/串联质谱分析胰蛋白酶肽得到了确认。对老鼠亚线粒体组分的研究发现GSTZ1定位于线粒体基质中。GSTZ1催化的DCA脱氯的特定活性在细胞质中是整个线粒体的2.5到3倍,并且与两个组分中GSTZ1蛋白表达直接成正比。老鼠线粒体GSTZ1对谷胱甘肽的表观米氏常数(App)K(m))比细胞质GSTZ1高2.5倍,而对于DCA的(App)K(m))值是相同的。老鼠以500 mg/kg/天的剂量给予DCA,持续8周,结果显示肝脏GSTZ1的活性和表达在细胞质和线粒体中大约降至对照组水平的10%。我们得出结论,线粒体是GSTZ1催化的DCA生物转化的一个新场所,GSTZ1是一种在细胞质和线粒体基质中共定位的酶。
Dichloroacetate (DCA) is a potential environmental hazard and an investigational drug. Repeated doses of DCA result in reduced drug clearance, probably through inhibition of glutathione transferase zeta1 (GSTZ1), a cytosolic enzyme that converts DCA to glyoxylate. DCA is known to be taken up by mitochondria, where it inhibits pyruvate dehydrogenase kinase, its major pharmacodynamic target. We tested the hypothesis that the mitochondrion was also a site of DCA biotransformation. Immunoreactive GSTZ1 was detected in liver mitochondria from humans and rats, and its identity was confirmed by liquid chromatography/tandem mass spectrometry analysis of the tryptic peptides. Study of rat submitochondrial fractions revealed GSTZ1 to be localized in the mitochondrial matrix. The specific activity of GSTZ1-catalyzed dechlorination of DCA was 2.5- to 3-fold higher in cytosol than in whole mitochondria and was directly proportional to GSTZ1 protein expression in the two compartments. Rat mitochondrial GSTZ1 had a 2.5-fold higher (App)K(m) for glutathione than cytosolic GSTZ1, whereas the (App)K(m) values for DCA were identical. Rats administered DCA at a dose of 500 mg/kg/day for 8 weeks showed reduced hepatic GSTZ1 activity and expression of approximately 10% of control levels in both cytosol and mitochondria. We conclude that the mitochondrion is a novel site of DCA biotransformation catalyzed by GSTZ1, an enzyme colocalized in cytosol and mitochondrial matrix. /Dichloroacetate/
来源:Hazardous Substances Data Bank (HSDB)
代谢
二氯乙酸在肝脏通过氧化脱氯代谢,生成乙醛酸,乙醛酸可以进入中间代谢,要么被氧化成草酸盐并排出体外,要么转化为二氧化碳,或者被整合到氨基酸或其他细胞分子中。
Dichloroacetic acid is metabolized in the liver by oxidative dechlorination to yield glyoxylate, which can enter intermediary metabolism and either be oxidized to oxalate and excreted, converted to carbon dioxide, and/or incorporated into amino acids or other cellular molecules. (L2086)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
二氯乙酸(DCA)是一种无色液体。二氯乙酸,特别是以其酯的形式,是有机合成中的中间体,用于生产乙醛酸、双烷氧基和双芳氧基酸、磺酰胺以及农业领域中铁螯合物的制备。它还用作纤维制造(聚对苯二甲酸乙二醇酯)的分析试剂和药用消毒剂(甲醛的替代品)。DCA是一种烙烫剂,在医学实践中以二氯乙酸盐的形式用于老茧、硬和软鸡眼、睑板腺瘤、脂溢性角化病、内生指甲、囊肿和宫颈良性糜烂。DCA是一种非专利药物,用于治疗遗传性线粒体疾病。2007年发现,二氯乙酸钠(DCA的钠盐)通过一种新颖的机制促进人类癌细胞死亡。在这项发现之后不久,医生们开始将其作为癌症治疗的非标签使用。二氯乙酸抑制丙酮酸脱氢酶激酶,这是一种促进丙酮酸进入线粒体的酶。 人体研究:嗜睡是DCA相当常见的副作用,在健康志愿者、1型糖尿病成人和乳酸酸中毒患者中均有观察到。一位接受每日50 mg/kg体重DCA单一剂量治疗四个月的同型家族性高胆固醇血症患者,出现了可逆的外周神经病,表现为反射丧失和肌肉无力。停止使用DCA后几周,这种效果逐渐消退。临床前证据表明,二氯乙酸可以逆转“瓦尔堡效应”并在癌症模型中抑制生长。“瓦尔堡效应”,也称为有氧糖酵解,描述了癌细胞即使在有氧条件下也增加对糖酵解的依赖以产生ATP。因此,继续对糖酵解抑制剂作为癌症治疗药物的研究。一个例子是二氯乙酸,它是一种丙酮酸模拟物,通过抑制丙酮酸脱氢酶激酶刺激氧化磷酸化。 动物研究:将DCA应用于兔眼时引起了严重损伤。将雄性和雌性大鼠暴露于DCA,目标剂量为每天10-600 mg/kg体重,通过饮用水给药14天,仅在最高剂量组观察到体重增长减少。治疗还增加了氨的尿液排泄并改变了氨生成酶的活性,表明对酸负荷的肾脏补偿。在饮用含有大约1100 mg/kg体重DCA的水13周的比格犬中观察到了眼毒性。其他研究或其他物种中没有观察到类似的特定器官效应。过氧化物酶体增殖与DCA对肝脏的慢性毒性和致癌性反复相关。它可以在小鼠和大鼠的肝脏中诱导过氧化物酶体增殖,如暴露于DCA 14天后,棕榈酰辅酶A氧化酶和肉碱乙酰转移酶活性增加、出现与过氧化物酶体增殖相关的蛋白质以及过氧化物酶体的体积密度增加所表明的。在8项研究中,通过饮用水给予雄性和/或雌性小鼠DCA盐,增加了肝细胞腺瘤和/或肝癌的发病率。通过饮用水给予雄性大鼠DCA后,在降低体重的剂量下发现了肝细胞癌的增加发病率,在更低剂量下发现了腺瘤和癌联合发病率增加。当通过饮用水给予DCA时,在三项研究中,DCA促进了致癌剂引发的雄性和雌性小鼠的肝细胞癌。DCA及其代谢物在母体治疗后在大鼠胎儿中积累。在妊娠第6-15天,母体剂量为140-2400 mg/kg体重/天,一些研究报告称,这改变了心脏和主要血管的发育,较少见的是肾脏和眼眶。在没有外源代谢活化系统的条件下,哺乳动物细胞中没有诱导DNA链断裂,但体内实验结果矛盾。在单次或重复给药后,无论是小鼠还是大鼠肝细胞都没有观察到影响,在单次给药后,也没有在来自脾脏、胃或十二指肠的上皮细胞中观察到影响。二氯乙酸在DNA修复缺陷的大肠杆菌Salmonella typhimurium株中没有诱导差异性毒性,但在一项研究中诱导了Escherichia coli的噬菌体。在单一研究中,它对Salmonella typhimurium TA100和TA98具有突变性。在DCA处理的Salmonella typhimurium TA100培养物中的400个逆转突变体中,大多数突变是GA AT转换。 生态毒性研究:DCA是水生生态系统中的常见污染物。对根生和漂浮的大型植物(Myriophyllum spicatum, M. sibiricum, 和 Lemna gibba)进行了一项研究,以调查潜在的植物毒性效应。最敏感的植物终点是湿重和植物长度。
IDENTIFICATION AND USE: Dichloroacetic acid (DCA) is a colorless liquid. Dichloroacetic acid, particularly in the form of its esters, is an intermediate in organic synthesis, used in the production of glyoxylic acid, dialkoxy and diaroxy acids, and sulfonamides and in the preparation of iron chelates in the agricultural sector. It is also used as an analytical reagent in fiber manufacture (polyethylene terephthalate) and as a medicinal disinfectant (substitute for formalin). DCA is a cauterizing agent and is used in medical practice as dichloroacetate on calluses, hard and soft corns, xanthoma palpebrarum, seborrhoeic keratoses, in-grown nails, cysts and benign erosion of the cervix. DCA is a nonproprietary drug used for treatment of inherited mitochondrial diseases. It was discovered in 2007 that dichloroacetate sodium (the sodium salt of DCA) promotes human cancer cell death by a novel mechanism. Soon after this discovery, physicians began using it off-label for cancer treatment. Dichloroacetate inhibits pyruvate dehydrogenase kinase, an enzyme that promotes pyruvate entry into mitochondria. HUMAN STUDIES: Drowsiness is a fairly frequent side effect of DCA and has been observed in healthy volunteers, adults with type I diabetes and patients with lactic acidosis. A patient with homozygous familial hypercholesterolemia who received single doses of 50 mg/kg bw DCA daily for four months developed reversible peripheral neuropathy characterized by loss of reflexes and muscle weakness. The effect subsided several weeks after cessation of administration of DCA. Preclinical evidence suggests that dichloroacetate can reverse the "Warburg effect" and inhibit growth in cancer models. The "Warburg effect," also termed aerobic glycolysis, describes the increased reliance of cancer cells on glycolysis for ATP production, even in the presence of oxygen. Consequently, there is continued interest in inhibitors of glycolysis as cancer therapeutics. One example is dichloroacetate, a pyruvate mimetic that stimulates oxidative phosphorylation through inhibition of pyruvate dehydrogenase kinase. ANIMAL STUDIES: DCA induced severe injury when applied to eyes of rabbits. Exposure of male and female rats to DCA at target doses of 10-600 mg/kg body weight per day in the drinking water for 14 days resulted in reduced weight gain only in the group given the highest dose. Treatment also increased urinary excretion of ammonia and changed the activities of enzymes of ammoniagenesis, indicating renal compensation for an acid load. Ocular toxicity was observed in beagle dogs that were treated for 13 weeks with an approximate dose of 1100 mg/kg body weight DCA in the drinking water. No similar organ specific effect has been seen in other studies or in other species. Induction of peroxisome proliferation has been repeatedly associated with the chronic toxicity and carcinogenicity of DCA to the liver. It can induce peroxisome proliferation in the livers of both mice and rats, as indicated by increased activities of palmitoyl coenzyme A oxidase and carnitine acetyl transferase, the appearance of a peroxisome proliferation associated protein and increased volume-density of peroxisomes after exposure to DCA for 14 days. In eight studies, DCA salt administered in the drinking water to male and/or female mice increased the incidences of hepatocellular adenomas and/or carcinomas. Following oral administration of DCA in the drinking-water to male rats, an increased incidence of hepatocellular carcinomas was found at a dose that decreased body weight and an increase in the combined incidence of adenomas and carcinomas was found at a lower dose. When administered in the drinking-water, DCA promoted hepatocellular carcinomas in carcinogen-initiated male and female mice in three studies. DCA and its metabolites accumulate in rat fetuses after treatment of the dam. Maternal doses of 140-2400 mg/kg bw per day on days 6-15 of gestation altered development of the heart and major vessels and less frequently, the kidneys and the orbits of the eyes, as reported in some studies. DNA strand breaks were not induced in mammalian cells in vitro in the absence of an exogenous metabolic activation system, but contradictory results were obtained in vivo. No effect was seen in either mouse or rat hepatic cells after single or repeated dosing, and no effects were observed in epithelial cells from spleen, stomach or duodenum after a single dose. Dichloroacetic acid did not induce differential toxicity in DNA repair-deficient strains of Salmonella typhimurium but did induce prophage in Escherichia coli in one study. It was mutagenic to Salmonella typhimurium TA100 and TA98 in single studies. Most of the mutations in 400 revertants of DCA-treated Salmonella typhimurium TA100 cultures were GA AT transitions. ECOTOXICITY STUDIES: DCA is a common contaminant of aquatic ecosystems. A study to investigate potential phytotoxic effects was conducted on rooted and floating macrophytes (Myriophyllum spicatum, M. sibiricum, and Lemna gibba). The most sensitive plant endpoints were wet mass and plant length.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
二氯醋酸离子通过抑制酶丙酮酸脱氢酶激酶来刺激酶丙酮酸脱氢酶的活性。因此,它通过将丙酮酸的代谢从发酵转变为线粒体内的氧化,从而减少乳酸的产生。(维基百科)
The dichloroacetate ion stimulates the activity of the enzyme pyruvate dehydrogenase by inhibiting the enzyme pyruvate dehydrogenase kinase. Thus, it decreases lactate production by shifting the metabolism of pyruvate from fermentation towards oxidation in the mitochondria. (Wikipedia)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌性证据
二氯醋酸在人类中的致癌性证据不足。在实验动物中有足够的证据表明二氯醋酸具有致癌性。总体评估:二氯醋酸可能对人类致癌(2B组)。
There is inadequate evidence in humans for the carcinogenicity of dichloroacetic acid. There is sufficient evidence in experimental animals for the carcinogenicity of dichloroacetic acid. Overall evaluation: Dichloroacetic acid is possibly carcinogenic to humans (Group 2B).
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
美国环保署发现没有数据显示DCA对人类有致癌作用。然而,有足够的证据可以得出结论,DCA至少在两种实验动物中具有致癌性。在雄性和雌性小鼠以及雄性大鼠中,肝细胞腺瘤和癌的发生率具有统计学意义,并与剂量相关。大鼠和小鼠的大细胞改变焦点(LFCA,以前称为增生结节)增加,这些焦点预计会发展为肝细胞腺瘤和癌。进一步的支持来自于:(1)报告一致阳性结果和大约相似剂量的独立研究数量,(2)两种物种之间肿瘤形成的部位一致性,(3)肿瘤发生率和多样性与剂量反应关系的明确证据,以及(4)明显从不止一个肝细胞系发展出肿瘤,而没有支持一致作用模式的数据。因此,美国环保署认为DCA可能对人类具有致癌性。
EPA finds there are no data on humans indicating that DCA is a carcinogen. However, there is sufficient evidence to conclude that DCA is carcinogenic in at least two species of experimental animals. A statistically significant and dose-related incidence of hepatocellular adenomas and carcinomas occur in male and female mice, and male rats. Large foci of cellular alteration (LFCA, formerly called hyperplastic nodules), which are expected to progress into hepatocellular adenomas and carcinomas, increased in rats and mice. Additional support is provided by: (1) the number of independent studies reporting consistently positive results and at roughly comparable doses, (2) site concordance for tumor formation between two species, (3) clear evidence of a dose-response relationship for tumor incidence and multiplicity, and (4) apparent development of tumors from more than one hepatic cell line and no clear data supporting a cohesive mode of action. Therefore, EPA believes that DCA is likely to be a carcinogen in humans.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
A3;已确认对动物有致癌性,但对人类的相关性未知。
A3; Confirmed animal carcinogen with unknown relevance to humans.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
我们研究了二氯乙酸盐(DCA)的药代动力学和药效学,这是一种用于治疗线粒体疾病、肺动脉高压和癌症的实验性药物。成年比格犬口服6.25毫克/千克,每12小时一次,持续4周。在1、14和28天后测定了血浆动力学。从基线和27天后的肝脏活检中测定了谷胱甘肽转移酶zeta 1(GSTZ1)的活性和表达,该酶将DCA生物转化为乙醛酸。狗的DCA清除速度比啮齿类动物和大多数人类慢得多,DCA代谢和GSTZ1活性和表达的抑制程度也更大。实际上,狗的DCA血浆动力学与具有GSTZ1多态性的人类相似,这些多态性导致血浆清除速度异常缓慢。狗可能是一个有用的模型,用于进一步研究DCA的毒代动力学和治疗潜力。/二氯乙酸盐/
We characterized the pharmacokinetics and dynamics of dichloroacetate (DCA), an investigational drug for mitochondrial diseases, pulmonary arterial hypertension, and cancer. Adult Beagle dogs were orally administered 6.25 mg/kg q12h DCA for 4 weeks. Plasma kinetics was determined after 1, 14, and 28 days. The activity and expression of glutathione transferase zeta 1 (GSTZ1), which biotransforms DCA to glyoxylate, were determined from liver biopsies at baseline and after 27 days. Dogs demonstrate much slower clearance and greater inhibition of DCA metabolism and GSTZ1 activity and expression than rodents and most humans. Indeed, the plasma kinetics of DCA in dogs is similar to humans with GSTZ1 polymorphisms that confer exceptionally slow plasma clearance. Dogs may be a useful model to further investigate the toxicokinetics and therapeutic potential of DCA. /Dichloroacetate/
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
二氯醋酸(DCA)的动力学和生物转化以及其对酪氨酸代谢的影响在九名接受25毫克/千克/天治疗六个月的患者和接受50毫克/千克/天治疗五天的大鼠中进行了测量。肝脏GSTz1/MAAI的活性和表达也进行了测量。长期给予DCA会导致患者和大鼠的血浆清除率显著年龄依赖性下降,血浆半衰期增加。随着大鼠年龄的增长,未改变的DCA的尿液排泄增加,而DCA代谢的终产物草酸盐则表现出相反的趋势。已知具有神经毒性的低浓度单氯醋酸(MCA)随着剂量的增加而在大鼠尿液中增加。MCA仅在较老动物的血浆中可检测到。肝脏GSTz1/MAAI的特异性活性在各年龄组中均受到DCA处理的同等抑制,而该酶的自然底物maleylacetone的血浆和尿液水平随着年龄的增长而增加。我们得出结论,年龄是DCA在体内代谢和消除的重要变量,它可能在某种程度上解释了这种化合物在人类和其他物种中的神经毒性。
... The kinetics and biotransformation of dichloroacetate (DCA) and its effects on tyrosine metabolism /were measured/ in nine patients treated for 6 months with 25 mg/kg/day and in rats treated for 5 days with 50 mg/kg/day. ... The activity and expression of hepatic GSTz1/MAAI /was also measured/. Chronic administration of DCA causes a striking age-dependent decrease in its plasma clearance and an increase in its plasma half-life in patients and rats. Urinary excretion of unchanged DCA in rats increases with age, whereas oxalate, an end product of DCA metabolism, shows the opposite trend. Low concentrations of monochloroacetate (MCA), which is known to be neurotoxic, increase as a function of age in the urine of dosed rats. MCA was detectable in plasma only of older animals. Hepatic GSTz1/MAAI-specific activity was inhibited equally by DCA treatment among all age groups, whereas plasma and urinary levels of maleylacetone, a natural substrate for this enzyme, increased with age. We conclude that age is an important variable in the in vivo metabolism and elimination of DCA and that it may account, in part, for the neurotoxicity of this compound in humans and other species. /Dichloroacetate/
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
七名患有肝硬化的受试者和六名健康志愿者接受了6,6-2H2-葡萄糖的5小时预负荷恒速输注。在2小时的基线期后,受试者通过静脉注射二氯乙酸,剂量为35毫克/千克,持续30分钟。通过混合效应群体基础技术比较了二氯乙酸的药代动力学。通过同位素稀释法计算葡萄糖生成。肝硬化受试者的峰值血浆二氯乙酸浓度与对照组受试者没有差异,但典型的二氯乙酸清除率仅为对照组受试者的36%(P < 0.001)。二氯乙酸使血浆乳酸浓度降低了大约50%(P < 0.001),葡萄糖生成降低了7%至9%(P < 0.05),并且无论是肝硬化受试者还是对照组受试者的血浆葡萄糖浓度都降低了9%至14%(P < 0.05)。二氯乙酸诱导的肝硬化受试者血浆乳酸和葡萄糖浓度的降低以及葡萄糖生成的降低与对照组受试者没有差异。肝硬化患者的血浆二氯乙酸清除率明显降低,这可能是由于肝功能受损。患有肝硬化的受试者并没有因为急性二氯乙酸诱导的低乳酸血症而出现葡萄糖生成抑制的加剧,也没有增加低血糖风险。
... Seven subjects with cirrhosis and six healthy volunteers received a 5-hour primed constant infusion of 6,6-2H2-glucose. After a 2-hour basal period, subjects received intravenous dichloroacetate, 35 mg/kg, over 30 minutes. Dichloroacetate pharmacokinetics were compared by the mixed-effects population-based technique. Glucose production was calculated by means of isotope dilution. ... Peak plasma dichloroacetate concentration in subjects with cirrhosis did not differ from that in control subjects, but typical dichloroacetate clearance was only 36% of that in control subjects (P <0 .001). Dichloroacetate decreased plasma lactate concentration by approximately 50% (P < 0.001), glucose production by 7% to 9% (P < 0.05), and plasma glucose concentration by 9% to 14% (P < 0.05) in both subjects with cirrhosis and control subjects. Dichloroacetate-induced decreases in plasma lactate and glucose concentrations and in glucose production in subjects with cirrhosis did not differ from those in control subjects. ... Plasma dichloroacetate clearance is markedly decreased in patients with cirrhosis, likely because of compromised hepatic function. Subjects with cirrhosis exhibit neither exaggerated inhibition of glucose production nor increased risk of hypoglycemia as a result of acute dichloroacetate-induced hypolactatemia. /Dichloroacetate/
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
二氯乙酸(DCA)在Fischer 344大鼠体内的处置情况在口服灌胃282 mg/kg的1-或2-(14)C-DCA(1-DCA或2-DCA)和28.2 mg/kg的2-DCA后48小时内进行了调查。DCA吸收迅速,其主要处置途径是通过呼出二氧化碳和随尿液排出。282 mg/kg剂量下的1-和2-DCA的处置情况相似。对于2-DCA,处置情况随剂量而异,表现为随剂量增加,作为二氧化碳呼出的百分比从34.4%(28.2 mg/kg)降至25.0%(282 mg/kg),而放射性物质在尿液中的排出百分比从12.7%增加到35.2%。这种尿液中排出百分比的提高主要是由于未代谢的DCA的存在,在较高剂量时未代谢的DCA占比超过20%,而在较低剂量时不到1%。主要的尿液代谢物是甘油酸、乙醛酸和草酸。DCA及其代谢物在组织中积累并缓慢排出。48小时后,28.2 mg/kg和282 mg/kg的2-DCA以及282 mg/kg的1-DCA处理的大鼠体内分别保留了36.4%、26.2%和20.8%的剂量。在检查的器官中,肝脏(剂量的4.9-7.9%)和肌肉(4.5-9.9%)含有最多的放射性物质,其次是皮肤(3.3-4.5%)、血液(1.4-2.6%)和肠道(1.0-1.7%)……
The disposition of dichloroacetic acid (DCA) was investigated in Fischer 344 rats over the 48 hr after oral gavage of 282 mg/kg of 1- or 2-(14)C-DCA (1-DCA or 2-DCA) and 28.2 mg/kg of 2-DCA. DCA was absorbed quickly, and the major route of disposition was through exhalation of carbon dioxide and elimination in the urine. The dispositions of 1- and 2-DCA at 282 mg/kg were similar. With 2-DCA, the disposition differed with dose in that the percentage of the dose expired as carbon dioxide decreased from 34.4% (28.2 mg/kg) to 25.0% (282 mg/kg), while the percentage of the radioactivity excreted in the urine increased from 12.7 to 35.2%. This percentage increase in the urinary excretion was mostly attributable to the presence of unmetabolized DCA, which comprised more than 20% at the higher dose and less than 1% at the lower dose. The major urinary metabolites were glycolic acid, glyoxylic acid, and oxalic acid. DCA and its metabolites accumulated in the tissues and were eliminated slowly. After 48 hr, 36.4%, 26.2%, and 20.8% of the dose was retained in the tissues of rats administered 28.2 and 282 mg/kg of 2-DCA and 282 mg/kg of 1-DCA, respectively. Of the organs examined, the liver (4.9-7.9% of dose) and muscle (4.5-9.9%) contained the most radioactivity, followed by skin (3.3-4.5%), blood (1.4-2.6%), and intestines (1.0-1.7%). ...
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • TSCA:
    Yes
  • 危险等级:
    8
  • 危险品标志:
    C
  • 安全说明:
    S16,S26,S36,S36/37,S45,S61
  • 危险类别码:
    R35,R50
  • WGK Germany:
    2
  • 海关编码:
    2915400090
  • 危险品运输编号:
    UN 1764 8/PG 2
  • 危险类别:
    8
  • RTECS号:
    AG6125000
  • 包装等级:
    II
  • 危险标志:
    GHS05,GHS07,GHS08,GHS09
  • 危险性描述:
    H315,H318,H335,H336,H351,H373,H400
  • 危险性防范说明:
    P261,P273,P280,P305 + P351 + P338
  • 储存条件:
    储存注意事项:应储存于阴凉、通风的库房中,并远离火种、热源。保持容器密封完好。需与氧化剂、碱类及还原剂分开存放,禁止混合储存。并配备相应的消防器材。储区应备有泄漏应急处理设备和合适的收容材料。

SDS

SDS:861c6fb8aaf439bcd55dfe2a3ec9d6e4
查看
国标编号: 81605
CAS: 79-43-6
中文名称: 二氯乙酸
英文名称: Dichloroacetic acid
别 名: 二氯醋酸
分子式: C 2 H 2 Cl 2 O 2 ;Cl 2 CHCOOH
分子量: 128.95
熔 点: 9~11℃ 沸点:194℃
密 度: 相对密度(水=1)1.56;
蒸汽压: >110℃
溶解性: 溶于水、乙醇、乙醚
稳定性: 稳定
外观与性状: 无色液体,有刺鼻气味
危险标记: 20(酸性腐蚀品)
用 途: 用于有机合成和药物制造

2.对环境的影响:
一、健康危害

侵入途径:吸入、食入、经皮吸收。
健康危害:大鼠吸入本品饱和蒸气8小时,未见引起死亡但可产生严重的皮肤和眼损害。二氯乙酸具有强烈的角质剥脱作用 。

二、毒理学资料及环境行为

毒性:属低毒类。
急性毒性:LD502820mg/kg(大鼠经口);510mg/kg(兔经皮)

危险特性:遇明火、高热可燃。与强氧化剂可发生反应。受高热分解产生有毒的腐蚀性气体。
燃烧(分解)产物:一氧化碳、二氧化碳、氯化氢。


3.现场应急监测方法:



4.实验室监测方法:
液-液萃取气相色谱法《水和废水标准检验法》(20版)


5.环境标准:
前苏联 车间空气中有害物质的最高容许浓度 4mg/m3[皮]


6.应急处理处置方法:
一、泄漏应急处理

疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,建议应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,在确保安全情况下堵漏。用沙土或其它不燃性吸附剂混合吸收,然后收集运至废物处理场所处置。也可以用大量水冲洗,经稀释的洗水放入废水系统。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。

二、防护措施

呼吸系统防护:高浓度环境中,应该佩带防毒面具。紧急事态抢救或逃生时,佩带自给式呼吸器。
眼睛防护:戴化学安全防护眼镜。
防护服:穿工作服(防腐材料制作)。
手防护:戴橡皮手套。
其它:工作后,淋浴更衣。注意个人清洁卫生。

三、急救措施

皮肤接触:脱去污染的衣着,立即用水冲洗至少15分钟。
眼睛接触:立即提起眼睑,用流动清水或生理盐水冲洗至少15分钟。
吸入:脱离现场至空气新鲜处。必要时进行人工呼吸。就医。
食入:误服者立即漱口,给饮牛奶或蛋清。就医。

灭火方法:雾状水、泡沫、二氧化碳、砂土。


制备方法与用途

理化性质

二氯乙酸又名二氯醋酸,是一种无色液体,具有刺激性气味。其相对分子质量为128.94,相对密度为1.5634。

二氯乙酸有两种晶型,熔点分别为9.7℃和-4℃;沸点分别为194℃、102℃(2.666×10³Pa)、91~92℃(1.600×10³Pa);折射率为1.4659。该物质易溶于水(20℃时溶解度为8.63)、乙醇、甲醇、乙醚、丙酮和氯仿,还能与苯混溶。

二氯乙酸的酸性比氯乙酸强,其离解常数K=5×10⁻²。化学性质与氯乙酸相近,分子结构中的两个氯原子可以被取代,如与苯酚反应生成二苯氧基乙酸;与羟胺反应生成异亚硝基乙酸等。此外,该物质还可以进行酯化反应,与乙醇反应得到二氯乙酸乙酯。

二氯乙酸具有可燃性和腐蚀性,其蒸气对皮肤和眼睛有强烈刺激作用。大鼠经口LD₅₀为2820毫克/公斤。

生产方法 1. 醋酸氯化母液回收法

从醋酸氯化产生的氯乙酸母液中,在硫磺催化下进行氯化反应,蒸馏可得二氯乙酸。

2. 三氯乙醛法

通过三氯乙醛与氰化钠反应生成1,1,1-三氯-2-羟基丙腈,脱去氯化氢后水解即可制得二氯乙酸。

3. 乙酸法

在碘催化下将乙酸进行氯化可得到二氯乙酸。

化学性质

无色液体,溶于水、乙醇和乙醚。

用途

用作农药及医药中间体;用于有机合成及制药工业;制备二氯乙酸甲酯(氯霉素中间体)、尿囊素及阳离子染料等;应用于有机合成及制药工业、染料中间体等。

生产类别与安全性
  • 类别:腐蚀物品
  • 毒性分级:中毒
  • 急性毒性:口服-大鼠LD₅₀: 2820毫克/公斤
  • 刺激数据
    • 皮肤-兔子10毫克/24小时中度刺激;眼睛-兔子0.05毫克重度刺激
  • 可燃性危险特性:遇热分解有毒氯化物气体,遇水放出有毒氯化物气体,受热产生有毒氯化物烟雾。
  • 储运特性:库房通风低温干燥;与氧化剂、碱类分开存放。
  • 灭火剂:砂土、泡沫、雾状水、二氧化碳
  • 职业标准:STEL 4毫克/立方米

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Products from the Base-Catalyzed Chlorination of Phenol. A New Synthesis of (±)-Caldariomycin1
    摘要:
    DOI:
    10.1021/jo01349a012
  • 作为产物:
    描述:
    二氯乙酸乙酯偶氮二异丁腈三丁基氧化锡 作用下, 以 为溶剂, 反应 1.5h, 以100%的产率得到二氯乙酸
    参考文献:
    名称:
    用双(三丁基锡)氧化物温和有效地裂解酯:可用于去除青霉酸酯的保护作用
    摘要:
    (新戊酰氧基)甲基6,6-二卤代,6α-单取代和6α-卤代1,2-二氧化青霉酸酯,N-苯甲酰甘氨酸甲酯和几种选定的酯可通过双(三丁基锡)氧化物(nBu 3 Sn)2有效水解O的产率为43%至100%。
    DOI:
    10.1016/s0040-4039(00)88468-3
  • 作为试剂:
    参考文献:
    名称:
    Rh 催化的光生烷基自由基的不对称烯丙基取代
    摘要:
    在此,我们报道了与原位生成的烷基自由基物种的双重光氧化还原/Rh 催化的不对称烯丙基取代反应。在温和的反应条件下,可以获得多种产品,产率 48-80%,ee 80-98%。值得注意的是,光催化剂在该方法中起着关键作用,不仅有助于从4-烷基-1,4-二氢吡啶生成烷基自由基,还有助于将π-烯丙基-Rh(III)配合物还原为π-烯丙基- Rh(II) 络合物。该策略提供了一种用烷基自由基进行 Rh 催化不对称烯丙基取代的方法,进一步扩展了反应模式,超越了成熟的热 Rh 催化烯丙基取代反应。
    DOI:
    10.1021/acscatal.4c03683
点击查看最新优质反应信息

文献信息

  • Heterocyclic amide compounds and pharmaceutical use of the same
    申请人:The Green Cross Corporation
    公开号:US05948785A1
    公开(公告)日:1999-09-07
    Heterocyclic amide compounds of the formula (I) ##STR1## wherein each symbol is as defined in the specification, pharmacologically acceptable salts thereof, pharmaceutical compositions thereof and pharmaceutical use thereof. The heterocyclic amide compounds and pharmacologically acceptable salts thereof of the present invention have superior inhibitory activity against chymase groups in mammals inclusive of human, and can be administered orally or parenterally. Therefore, they are useful as chymase inhibitors and can be effective for the prophylaxis and treatment of various diseases caused by chymase, such as those caused by angiotensin II.
    式(I)的杂环酰胺化合物##STR1##,其中每个符号如规范中定义的那样,其药理学上可接受的盐,其药物组合物和其药用。本发明的杂环酰胺化合物及其药理学上可接受的盐对哺乳动物包括人类的胰蛋白酶组具有优越的抑制活性,并可经口或经肠外途径给药。因此,它们可用作胰蛋白酶抑制剂,并可有效预防和治疗由胰蛋白酶引起的各种疾病,如由II型血管紧张素引起的疾病。
  • [EN] TRPV4 ANTAGONISTS<br/>[FR] ANTAGONISTES DE TRPV4
    申请人:GLAXOSMITHKLINE LLC
    公开号:WO2013012500A1
    公开(公告)日:2013-01-24
    The present invention relates to spirocarbamate compounds of Formula (I) in which R1, (R2)Y, R3, R4, X and A have the meanings given in the specification. The invention further provides pharmaceutical compositions containing the compounds or pharmaceutically acceptable salts thereof and relates to their use of these compounds as TRPV4 antagonists in treating or preventing conditions associated with TRPV4 imbalance.
    本发明涉及式(I)中的螺环氨基甲酸酯化合物,其中R1,(R2)Y,R3,R4,X和A具有规范中给定的含义。该发明还提供含有这些化合物或其药用可接受盐的药物组合物,并涉及将这些化合物用作TRPV4拮抗剂以治疗或预防与TRPV4失衡相关的疾病。
  • Salts of zinc and aliphatic haloid carboxylic acids for therapy of skin neoplasms and visible mucous coats
    申请人:Tsyb, Anatoly Fyodorovich
    公开号:EP1746082A1
    公开(公告)日:2007-01-24
    The invention relates to medicine, and more particularly to dermatology, namely to new salts of zinc and aliphatic haloid carboxylic acids which can be used to treat benign skin lesions and visible mucous coats. The following chemical formula of salts of zinc and aliphatic haloid carboxylic acids is proposed wherein in formulae Fluorine (F), Chlorine (Cl), Bromine (Br) or Iodine (J) can be a halogen atom. The obtained technical result is the creation of a unique preparation to treat benign skin lesions and visible mucous coats. The preparation is low-toxic, fast acting with a pronounced therapeutic effect and a good tolerance. It causes no complications during therapy, and ensures healing without scar tissue formation. The created preparation allows to extend the assortment of drugs for therapy of similar diseases.
    该发明涉及医学,更具体地说是皮肤病学,即锌和脂肪族卤代羧酸的新盐,可用于治疗良性皮肤病变和可见的粘膜。提议以下锌和脂肪族卤代羧酸盐的化学式 其中在化学式中,氟(F)、氯(Cl)、溴(Br)或碘(I)可以是卤素原子。获得的技术结果是创造一种独特的制剂,用于治疗良性皮肤病变和可见的粘膜。该制剂低毒、作用迅速,具有明显的治疗效果和良好的耐受性。在治疗过程中不会引起并发症,并确保愈合时不形成疤痕组织。所创造的制剂允许扩展治疗类似疾病的药物种类。
  • Olefin cyclisations of hindered α-acyliminium ions
    作者:B.P. Wijnberg、W.N. Speckamp、A.R.C. Oostveen
    DOI:10.1016/0040-4020(82)85067-9
    日期:1982.1
    imides 2 and 4. HCOOH-Cyclisation of the hydroxylactams affords polycyclic piperidines through stereoselective α-acyliminium ring closure. Concomitant synchronous and stepwise cyclisation pathways are operative in the anti-periplanar addition of tertiary α-acyliminium ions to Me substituted olefins 8c and 11c.
    立体控制的NaBH 4 / H⊕-还原3,4-顺式-双取代的N-烯基酰亚胺1-5导致仲羟基内酰胺。叔羟基内酰胺是通过将MeMgCl加到酰亚胺2和4中形成的。羟基内酰胺的HCOOH环化通过立体选择性α-酰基亚胺闭环提供多环哌啶。伴随的同步和逐步环化途径在叔α-酰基亚胺离子反平面添加到Me取代的烯烃8c和11c中起作用。
  • An Efficient and Practical System for the Catalytic Oxidation of Alcohols, Aldehydes, and α,β-Unsaturated Carboxylic Acids
    作者:Joseph M. Grill、James W. Ogle、Stephen A. Miller
    DOI:10.1021/jo0612574
    日期:2006.12.1
    Upon exposure to commercial bleach (∼5% aqueous sodium hypochlorite), nickel(II) chloride or nickel(II) acetate is transformed quantitatively into an insoluble nickel species, nickel oxide hydroxide. This material consists of high surface area nanoparticles (ca. 4 nm) and is a useful heterogeneous catalyst for the oxidation of many organic compounds. The oxidation of primary alcohols to carboxylic
    暴露于市售漂白剂(约5%次氯酸钠水溶液)后,氯化镍(II)或乙酸镍(II)定量转化为不溶的镍物质,氢氧化镍氢氧化物。该材料由高表面积纳米颗粒(约4 nm)组成,是用于许多有机化合物氧化的有用的多相催化剂。使用2.5 mol%的镍催化剂和市售漂白剂作为末端氧化剂,证明了伯醇氧化为羧酸,仲醇氧化为酮,醛氧化为羧酸和α,β-不饱和羧酸氧化为环氧化合物。我们证明了使用该系统可控制和选择性氧化多种有机底物,可提供70-95%的分离产率和90-100%的纯度。在大多数情况下,氧化反应可以在没有有机溶剂的情况下进行,
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物