摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

一溴二氯乙酸 | 71133-14-7

中文名称
一溴二氯乙酸
中文别名
溴氯乙酸
英文名称
bromodichloroacetic acid
英文别名
dichlorobromoacetic acid;bromodichloroacetate;BDCAA;bromo-dichloro-acetic acid;Brom-dichlor-essigsaeure;2-bromo-2,2-dichloroacetic acid
一溴二氯乙酸化学式
CAS
71133-14-7
化学式
C2HBrCl2O2
mdl
——
分子量
207.839
InChiKey
XSWVFEQKZFUULO-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    69-72 °C(lit.)
  • 沸点:
    200.7±35.0 °C(Predicted)
  • 密度:
    2.254±0.06 g/cm3(Predicted)
  • 溶解度:
    In water, 4.9X10+3 mg/L at 25 °C (est)
  • 蒸汽压力:
    3.6X10-2 mm Hg at 25 °C (est)
  • 稳定性/保质期:

    Stable

  • 分解:
    Carbon monoxide, Carbon dioxide, Hydrogen chloride gas, Hydrogen bromide gas.
  • 解离常数:
    pKa = 0.03 (est)

计算性质

  • 辛醇/水分配系数(LogP):
    1.8
  • 重原子数:
    7
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    37.3
  • 氢给体数:
    1
  • 氢受体数:
    2

ADMET

代谢
... /与其它一些三卤代醋酸不同/醋酸(BDCA)即使在较高剂量下也不会诱导过氧化物酶体的增殖。本研究试图确定三卤代醋酸(THAs)在代谢上的差异是否可能导致了它们不同的毒理学特性。研究是在给予雄性B6C3F1小鼠(14C1,2)三醋酸TCA)、(14C1)BDCA和(14C1,2)二醋酸(DCA)的口服给药后进行的。将一个原子替换为溴原子大大增强了THA的代谢。24小时内,BDCA保留在尸体中的放射性标签远少于TCA。BDCA的放射性标签主要出现在尿液中,草酸是主要的代谢物。TCA主要以原形在尿液中排出。BDCA产生CO2的速率与剂量有关。初始 产生速率从5和20 mg/kg的4.1 +/- 0.3 hr^-1降低到100 mg/kg的2.7 +/- 0.6 hr^-1,但在24小时内转化为 的总量在最高剂量下更大。正如预测的那样,将TCA上的替换为大大增加了其代谢。
... /Unlike some other trihaloacetates/ bromodichloroacetate (BDCA) ... does not induce peroxisome proliferation even at high doses. This study attempts to determine whether differences in the metabolism of the trihaloacetates (THAs) may contribute to their differing toxicological properties. Studies were performed in male B6C3F1 mice given (14C1,2) trichloroacetic acid (TCA), (14C1)BDCA, and (14C1,2) dichloroacetic acid (DCA) by gavage. The replacement of a Cl by a Br greatly enhances THA metabolism. Much less radiolabel from BDCA is retained in the carcass after 24 hr than from TCA. Radiolabel from BDCA is largely found in the urine, with oxalate being the major metabolite. TCA is largely eliminated unchanged in the urine. There are dose-related changes in the rate of CO2 production from BDCA. The initial rate of CO2 production is reduced from 4.1 +/- 0.3 hr-1 at 5 and 20 mg/kg to 2.7 +/- 0.6 hr-1 at 100 mg/kg, but the net conversion to CO2 in 24 hr is greater at the highest dose. As would be predicted, substitution Br for Cl on TCA greatly increased its metabolism.
来源:Hazardous Substances Data Bank (HSDB)
代谢
调查人员研究了B6C3F1雄性小鼠中BDCA的代谢。正如预测的那样,用替换TCA中的导致三卤代醋酸盐代谢的程度大幅增加。在24小时内,小鼠尿液中未改变地排除了100毫克/千克体重剂量的TCA的45%,而同样剂量的BDCA在尿液中的发现量不到4%。在较低剂量下,只有不到百分之一的BDCA未改变地被排除。
/Investigators/ studied the metabolism of BDCA in male B6C3F1 mice. As predicted, substitution of a bromine for a chlorine in TCA resulted in a substantially greater extent of trihaloacetate metabolism. Whereas 45% of a 100 mg/kg of body weight dose of TCA was eliminated unchanged in the urine of mice within 24 hr, less than 4% of the same dose of BDCA was found in the urine. At lower doses, only a fraction of a percent of the BDCA was eliminated unchanged.
来源:Hazardous Substances Data Bank (HSDB)
代谢
BDCA的代谢在小鼠和大鼠中随着剂量的增加而不同地改变。研究者们发现,从1-(14)C-BDCA产生的二氧化碳的动力学表明,在低剂量下,BDCA通过DCA有效地转化为二氧化碳,但随着剂量接近100 mg/kg体重,直接的脱羧反应变得重要。这种复杂的活动在大鼠中没有观察到,因为随着剂量的增加,转化为二氧化碳的剂量比例逐渐减小。这表明,在大鼠中,直接脱羧在BDCA的代谢中扮演的角色不如在小鼠中重要。
The metabolism of BDCA is differentially modified in mice and rats as doses are increased. /Investigators/ found that the kinetics of carbon dioxide production from 1-(14)C-BDCA suggested an efficient conversion of BDCA to carbon dioxide through DCA at low doses, but a direct decarboxylation reaction became important as doses approached 100 mg/kg of body weight. This complex activity was not observed in rats, in that a progressively smaller fraction of the dose is converted to carbon dioxide as dose is increased. This suggests that direct decarboxylation plays a less important role in the metabolism of BDCA in rats than in mice.
来源:Hazardous Substances Data Bank (HSDB)
代谢
小鼠和大鼠产生的尿代谢物比例表明,两种物种在BDCA代谢方面存在一些实质性差异。小鼠产生的草酸盐(约占总口服剂量的30%)比大鼠(约20%)多得多。与等效剂量的DCA相比,BDCA转化为草酸盐的比例要大得多,这表明小鼠尿液中看到的额外草酸盐大部分来自于BDCA的还原脱卤,随后形成过氧自由基并分解为草酸盐。
The ratios of urinary metabolites produced by mice and rats suggest that there are some substantive differences in the metabolism of BDCA in the two species. Mice produce much higher amounts of oxalate (about 30% of the orally administered dose) than do rats (about 20%). The much greater conversion of BDCA to oxalate than for equivalent doses of DCA suggests that much of the extra oxalate seen in mouse urine arises from reductive dehalogenation of BDCA, followed by peroxy radical formation and decomposition to oxalate.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
当给予啮齿类动物时,卤代乙酸盐已被证明能增加肝脏中巴比妥酸反应物和8-羟基脱氧鸟苷酸平的形成。这些反应似乎会被预先处理所改变。为了研究可能导致这些氧化应激改变的潜在机制,我们检查了三氯乙酸TCA)或二氯乙酸(DCA)预处理对改变二氯乙酸(BDCA)的代谢及其代谢物处置的能力,在雄性B6C3F1小鼠中进行研究。用1克/升的DCA和TCA预处理小鼠两周,通过饮,改变了BDCA的初始肝脏代谢及其代谢物DCA的进一步代谢。DCA预处理抑制了细胞质中1 mM DCA或BDCA的代谢高达70%。相比之下,DCA预处理使肝脏微粒体BDCA代谢增加了1.3倍,但对DCA的微粒体代谢几乎没有影响。增加的微粒体代谢BDCA似乎归因于诱导了一种产生CO2二氯甲烷(BDCM)作为代谢物的代谢途径。TCA预处理在细胞质中抑制了BDCA代谢高达70%,在微粒体中抑制了30%,但对DCA代谢几乎没有影响。这些结果表明,在高剂量的卤代乙酸盐的肝脏代谢变得相当复杂,这些剂量已经被用于癌症生物检测中...
... When administered to rodents, haloacetates have been shown to increase formation of thiobarbituric acid-reactive substances and 8-hydroxydeoxyguanosine levels in the liver. These responses appear to be modified by prior treatment. To examine potential mechanisms that account for these modifications in oxidative stress, the ability of trichloroacetate (TCA) or dichloroacetate (DCA) pretreatment to alter the metabolism of bromodichloroacetate (BDCA) and the disposition of its metabolites was examined in male B6C3F1 mice. Two-week pretreatment with 1 g/L DCA and TCA in the drinking water of mice alters the initial hepatic metabolism of BDCA and the further metabolism of its metabolite DCA. DCA pretreatment inhibits cytosolic metabolism of both 1 mM DCA or BDCA up to 70%. In contrast, DCA pretreatment stimulates hepatic microsomal BDCA metabolism 1.3-fold but has little effect on microsomal metabolism of DCA. Increased microsomal metabolism of BDCA appears to be attributable to the induction of a metabolic pathway that produces CO2 and bromodichloromethane (BDCM) as metabolites. TCA pretreatment inhibits BDCA metabolism up to 70% in the cytosol and 30% in microsomes but has little effect on DCA metabolism. These results indicate that the hepatic metabolism of the haloacetate becomes quite complex at the high doses that have been employed in cancer bioassays...
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 人类毒性摘录
征兆与症状:腐蚀性。可引起烧伤。通过吸入、皮肤接触和吞咽均有害。
/SIGNS AND SYMPTOMS/ Corrosive. Causes burns. Harmful by inhalation, in contact with skin and if swallowed.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 人类毒性摘录
暴露的症状可能包括灼热感、咳嗽、喘息、喉炎、呼吸急促、头痛、恶心和呕吐。吸入可能导致喉头和支气管痉挛、炎症和肿、化学性肺炎和肺肿。该物质对粘膜和上呼吸道组织、眼睛和皮肤具有极强的破坏性。
/SIGNS AND SYMPTOMS/ ... Symptoms of exposure may include burning sensation, coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and vomiting. Inhalation may result in spasm, inflammation and edema of the larynxand bronchi, chemical pneumonitis, and pulmonary edema. Material is extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes, and skin.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 人类毒性摘录
饮用化会生成消毒副产物(DBPs),在高剂量下已被证实会破坏啮齿类动物的精子生成,这表明DBPs可能对男性生殖健康构成风险。本研究评估了DBPs的暴露和睾丸毒性,表现为精液质量的改变。进行了一项队列研究,以评估暴露于DBPs的男性的精液质量。参与者是228名不同DBP特征的假定生育男性。他们完成了一项关于人口统计、健康状况、饮和其他暴露的的电话访谈,并提供了一份精液样本。精液结果包括精子浓度和形态,以及DNA完整性和染色质成熟度。通过整合关于饮和洗澡淋浴的消耗量数据以及自来中的浓度测量来评估对DBPs的暴露。使用多元线性回归来评估DBPs暴露与不良精子结果之间的关系。平均(中位数)精子浓度和精子数分别为114.2(90.5)百万/mL和362(265)百万。四种三卤甲烷(THM4)暴露的平均(中位数)为45.7(65.3)微克/升,九种卤乙酸(HAA9)暴露的平均(中位数)为30.7(44.2)微克/升。这些精子参数与这些类别的DBPs暴露无关。对于其他精子结果,我们没有发现随着三卤甲烷(THMs)或卤乙酸(HAAs)暴露增加而异常精液质量增加的一致模式。使用替代方法来评估DBPs的暴露和特定地点分析并没有改变这些结果。总的来说,目前的研究结果不支持在接近监管限值的DBPs暴露平与不良精子结果之间有关联,尽管总有机卤化物与精子浓度的关联与假设一致。总有机卤化物暴露与精子浓度的唯一关联可能支持了这样的发现,即总有机卤化物比任何受监管的DBP组或物种是更强烈的不良妊娠结果的风险因素。先前的研究表明,通过沐浴和淋浴接触THMs可能比其他暴露指标更强烈地与不良生殖结果相关。这些结果并没有支持这些发现。/消毒副产物/
/EPIDEMIOLOGY STUDIES/ Chlorination of drinking water generates disinfection by-products (DBPs) , which have been shown to disrupt spermatogenesis in rodents at high doses, suggesting that DBPs could pose a reproductive risk to men. ...This study ...assessed DBP exposure and testicular toxicity, as evidenced by altered semen quality. ... A cohort study /was conducted/ to evaluate semen quality in men with well-characterized exposures to DBPs. Participants were 228 presumed fertile men with different DBP profiles. They completed a telephone interview about demographics, health history, water consumption, and other exposures and provided a semen sample. Semen outcomes included sperm concentration and morphology, as well as DNA integrity and chromatin maturity. Exposures to DBPs were evaluated by incorporating data on water consumption and bathing and showering with concentrations measured in tap water. ... Multivariable linear regression /was used/ to assess the relationship between exposure to DBPs and adverse sperm outcomes. ... The mean (median) sperm concentration and sperm count were 114.2 (90.5) million/mL and 362 (265) million, respectively. The mean (median) of the four trihalomethane species (THM4) exposure was 45.7 (65.3) ug/L, and the mean (median) of the nine haloacetic acid species (HAA9) exposure was 30.7 (44.2) ug/L. These sperm parameters were not associated with exposure to these classes of DBPs. For other sperm outcomes, we found no consistent pattern of increased abnormal semen quality with elevated exposure to trihalomethanes (THMs) or haloacetic acids (HAAs) . The use of alternate methods for assessing exposure to DBPs and site-specific analyses did not change these results. ... Overall, the results of the present study do not support an association between exposure to DBPs at levels approaching regulatory limits and adverse sperm outcomes, although /there was/ an association between total organohalides and sperm concentration that was in line with /the/ hypothesis.... The lone association of total organohalide exposure with sperm concentration may lend support to findings that have suggested that total organohalide is a stronger risk factor for adverse pregnancy outcomes than any of the regulated DBP groups or species...that the toxicity of total organohalides is greater than that of the individual or subclasses of DBPs. ... Previous studies have suggested that exposures to THMs via bathing and showering may be more strongly associated with adverse reproductive outcomes than other exposure indicators ... . /These/ results did not support these findings. /Disinfection by-products/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 非人类毒性摘录
实验室动物:发育或生殖毒性/ ... 研究了将处于神经胚形成阶段(3-6体节对)的CD-1小鼠胚胎暴露于醋酸(BCA)、二醋酸(DBCA)和醋酸(BDCA)的胚胎整体培养中,浓度范围为50至2500微摩尔。在26小时的暴露期后评估了形态发育。胚胎暴露于这些卤代醋酸(HAAs)会引起形态发育异常,包括前脑和咽弓发育不全以及眼睛和心管异常。诱导神经管形态发育异常的基准浓度分别为BCA 63微摩尔、DBCA 500微摩尔和BDCA 536微摩尔。/之前开发的/卤代醋酸定量结构-活性关系(HAA QSAR)准确地预测了这三种化学物质在之前测试的二卤代和三卤代醋酸中的定位,并且正确预测了BCA会比DBCA和BDCA更有效,后两种HAAs的效果接近等同...
/LABORATORY ANIMALS: Developmental or Reproductive Toxicity/ ... The effects of exposing neurulation staged (3-6 somite pairs) CD-1 mouse conceptuses to bromochloro- (BCA), dibromochloro- (DBCA) and bromodichloro-acetic (BDCA) acids in whole embryo culture /were examined/ at concentrations ranging from 50 to 2500 uM. Morphological development was assessed after a 26 hr exposure period. Exposure of conceptuses to these HAAs produced dysmorphogenesis, including prosencephalic and pharyngeal arch hypoplasia as well as eye and heart tube abnormalities. Benchmark concentrations for induction of neural tube dysmorphogenesis were 63, 500 and 536 uM for BCA, DBCA and BDCA, respectively. /A/ previously developed HAA QSAR accurately predicted placement of these three chemicals in the larger context of the previously tested di- and tri-HAAs, also correctly predicting that BCA would be more potent than DBCA and BDCA, and that the latter two HAAs would be near equi-potent...
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
二氯乙酸(BDCA)的口服和静脉注射消除动力学进行了研究... 以5、20和100 mg/kg的剂量给予B6C3F1小鼠BDCA,似乎分布到总体,平均分布体积为427 +/- 79 mL/kg。它受到首次通过肝脏代谢的影响,生物利用度范围为0.28-0.73。从静脉注射和口服给药的两个较低剂量计算出的平均终末半衰期为1.37 +/- 0.21小时。在剂量大于20 mg/kg时表现出非线性行为,曲线下面积(AUC)远高于预期,总清除率(CL(b))降低,在最高剂量时终末半衰期增加到2.3小时。较低两个剂量的平均CL(b)为220 mL/hr/kg,但在高剂量时降至156 mL/hr/kg。BDCA主要通过代谢消除,在高剂量下只有2.4%的母体剂量在尿液中回收。从高剂量计算出的未结合肾清除率为15.0 mL/hr/kg。BDCA与血浆蛋白中等结合(f(u) = 0.28)并且优先分布到血浆,血液/血浆比率为0.88。
The oral and iv elimination kinetics were investigated for bromodichloroacetate (BDCA) ... BDCA was administered at a dose of 5, 20 and 100 mg/kg to B6C3F1 mice and appears to distribute to the total body water with a mean volume of distribution of 427 +/- 79 mL/kg. It is subject to first-pass hepatic metabolism with a range of bioavailabilities of 0.28-0.73. A mean terminal half-life of 1.37 +/- 0.21 hr was calculated from the two lower doses of both iv and oral administration. Non-linear behavior was exhibited at doses greater than 20 mg/kg, with a much higher than expected area under the curve (AUC), a decrease in total body clearance (CL(b)) and an increase in the terminal half-life to 2.3 hr at the highest dose. The average CL(b) was 220 mL/hr/kg for the lower two doses but decreased to 156 mL/hr/kg at the high dose. The BDCA is primarily eliminated by metabolism, with only 2.4% of the parent dose being recovered in the urine at the high dose. The unbound renal clearance, as calculated from the high dose, was 15.0 mL/hr/kg. The BDCA is moderately bound to plasma proteins (f(u) = 0.28) and preferentially distributes to the plasma with a blood/plasma ratio of 0.88.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
随着大鼠体内醋酸(BDCA)剂量从20毫克/千克增加到100毫克/千克,以二醋酸(DCA)形式通过尿液排出的剂量比例从大约2%增加到13%,而在小鼠中,这一比例的增加是从0.2%到大约3%。
As the bromodichloroacetic (BDCA) acid dose is increased from 20 to 100 mg/kg of body weight in the rat, the fraction of the dose that is eliminated in the urine as dichloroacetic acid (DCA) increases from about 2% to 13%, whereas in mice the increase is from 0.2% to approximately 3%.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险品标志:
    F,Xi,C
  • 安全说明:
    S16,S26,S27,S36,S36/37/39,S45
  • 危险类别码:
    R36/37/38
  • WGK Germany:
    1,3
  • 危险品运输编号:
    UN 2398 3/PG 2
  • 储存条件:
    2-8°C

SDS

SDS:1dfef9daa8aa9bab9f740ed36eea2252
查看

模块 1. 化学
1.1 产品标识符
: 一溴二氯乙酸
产品名称
: Supelco
1.2 鉴别的其他方法
Bromdichloroacetic acid
1.3 有关的确定了的物质或混合物的用途和建议不适合的用途
仅用于研发。不作为药品、家庭或其它用途。

模块 2. 危险性概述
2.1 GHS-分类
急性毒性, 经口 (类别 4)
急性毒性, 吸入 (类别 4)
急性毒性, 经皮 (类别 4)
皮肤腐蚀 (类别 1B)
严重眼睛损伤 (类别 1)
2.2 GHS 标记要素,包括预防性的陈述
象形图
警示词 危险
危险申明
H302 吞咽有害。
H312 皮肤接触有害。
H314 造成严重皮肤灼伤和眼损伤。
H332 吸入有害。
警告申明
预防
P260 不要吸入粉尘/烟/气体/烟雾/蒸气/喷雾。
P264 操作后彻底清洁皮肤。
P270 使用本产品时不要进食、饮或吸烟。
P271 只能在室外或通风良好之处使用。
P280 戴防护手套/穿防护服/戴护目镜/戴面罩.
响应
P301 + P312 如果吞下去了:
如感觉不适,呼救解毒中心或看医生。如吞咽:如感觉不适,呼叫解毒中
心或就医。
P301 + P330 + P331 如误吞咽:漱口。不要诱导呕吐。
P303 + P361 + P353 如皮肤(或头发)沾染:立即去除/ 脱掉所有沾染的衣服。用清洗皮肤/
淋浴。
P304 + P340 如吸入: 将患者移到新鲜空气处休息,并保持呼吸舒畅的姿势。
P305 + P351 + P338 如与眼睛接触,用缓慢温和地冲洗几分钟。如戴隐形眼镜并可方便地取
出,取出隐形眼镜,然后继续冲洗.
P310 立即呼叫中毒控制中心或医生.
P322 具体措施(见本标签上提供的急救指导)。
P363 沾染的衣服清洗后方可重新使用。
储存
P405 存放处须加锁。
处置
P501 将内容物/ 容器处理到得到批准的废物处理厂。
2.3 其它危害物 - 无

模块 3. 成分/组成信息
3.1 物 质
: Bromdichloroacetic acid
别名
: C2HBrCl2O2
分子式
: 207.84 g/mol
分子量
组分 浓度或浓度范围
Bromodichloroacetic acid
-
化学文摘登记号(CAS 71133-14-7
No.)

模块 4. 急救措施
4.1 必要的急救措施描述
一般的建议
请教医生。 向到现场的医生出示此安全技术说明书。
吸入
如果吸入,请将患者移到新鲜空气处。 如呼吸停止,进行人工呼吸。 请教医生。
皮肤接触
立即脱掉被污染的衣服和鞋。 用肥皂和大量的冲洗。 请教医生。
眼睛接触
用大量彻底冲洗至少15分钟并请教医生。
食入
禁止催吐。 切勿给失去知觉者通过口喂任何东西。 用漱口。 请教医生。
4.2 主要症状和影响,急性和迟发效应
该物质对粘膜组织和上呼吸道、眼睛和皮肤破坏巨大。, 痉挛,发炎,咽喉肿痛, 痉挛,发炎,支气管炎, 肺炎,
肿, 灼伤感:, 咳嗽, 喘息, 喉炎, 呼吸短促, 头痛, 恶心
4.3 及时的医疗处理和所需的特殊处理的说明和指示
无数据资料

模块 5. 消防措施
5.1 灭火介质
灭火方法及灭火剂
雾,抗乙醇泡沫,干粉或二氧化碳灭火。
5.2 源于此物质或混合物的特别的危害
碳氧化物, 氯化氢气体, 溴化氢
5.3 给消防员的建议
如必要的话,戴自给式呼吸器去救火。
5.4 进一步信息
无数据资料

模块 6. 泄露应急处理
6.1 作业人员防护措施、防护装备和应急处置程序
使用个人防护用品。 避免粉尘生成。 避免吸入蒸气、烟雾或气体。 保证充分的通风。
人员疏散到安全区域。 避免吸入粉尘。
6.2 环境保护措施
不要让产品进入下道。
6.3 泄漏化学品的收容、清除方法及所使用的处置材料
收集和处置时不要产生粉尘。 扫掉和铲掉。 放入合适的封闭的容器中待处理。
6.4 参考其他部分
丢弃处理请参阅第13节。

模块 7. 操作处置与储存
7.1 安全操作的注意事项
避免接触皮肤和眼睛。 避免形成粉尘和气溶胶。
在有粉尘生成的地方,提供合适的排风设备。一般性的防火保护措施。
7.2 安全储存的条件,包括任何不兼容性
贮存在阴凉处。 使容器保持密闭,储存在干燥通风处。
7.3 特定用途
无数据资料

模块 8. 接触控制和个体防护
8.1 容许浓度
最高容许浓度
没有已知的国家规定的暴露极限。
8.2 暴露控制
适当的技术控制
根据良好的工业卫生和安全规范进行操作。 休息前和工作结束时洗手。
个体防护设备
眼/面保护
面罩與安全眼鏡请使用经官方标准如NIOSH (美国) 或 EN 166(欧盟) 检测与批准的设备防护眼部。
皮肤保护
戴手套取 手套在使用前必须受检查。
请使用合适的方法脱除手套(不要接触手套外部表面),避免任何皮肤部位接触此产品.
使用后请将被污染过的手套根据相关法律法规和有效的实验室规章程序谨慎处理. 请清洗并吹干双手
所选择的保护手套必须符合EU的89/686/EEC规定和从它衍生出来的EN 376标准。
身体保护
全套防化学试剂工作服, 防护设备的类型必须根据特定工作场所中的危险物的浓度和数量来选择。
呼吸系统防护
如危险性评测显示需要使用空气净化的防毒面具,请使用全面罩式多功能微粒防毒面具N100型(US
)或P3型(EN
143)防毒面具筒作为工程控制的候补。如果防毒面具是保护的唯一方式,则使用全面罩式送风防毒
面具。 呼吸器使用经过测试并通过政府标准如NIOSH(US)或CEN(EU)的呼吸器和零件。

模块 9. 理化特性
9.1 基本的理化特性的信息
a) 外观与性状
形状: 固体
b) 气味
无数据资料
c) 气味阈值
无数据资料
d) pH值
无数据资料
e) 熔点/凝固点
熔点/凝固点: 69 - 72 °C - lit.
f) 沸点、初沸点和沸程
无数据资料
g) 闪点
无数据资料
h) 蒸发速率
无数据资料
i) 易燃性(固体,气体)
无数据资料
j) 高的/低的燃烧性或爆炸性限度 无数据资料
k) 蒸气压
无数据资料
l) 蒸汽密度
无数据资料
m) 密度/相对密度
无数据资料
n) 溶性
无数据资料
o) n-辛醇/分配系数
无数据资料
p) 自燃温度
无数据资料
q) 分解温度
无数据资料
r) 粘度
无数据资料

模块 10. 稳定性和反应活性
10.1 反应性
无数据资料
10.2 稳定性
无数据资料
10.3 危险反应
无数据资料
10.4 应避免的条件
无数据资料
10.5 不相容的物质
强氧化剂
10.6 危险的分解产物
其它分解产物 - 无数据资料

模块 11. 毒理学资料
11.1 毒理学影响的信息
急性毒性
无数据资料
皮肤刺激或腐蚀
无数据资料
眼睛刺激或腐蚀
无数据资料
呼吸道或皮肤过敏
无数据资料
生殖细胞突变性
无数据资料
致癌性
IARC:
此产品中没有大于或等于 0。1%含量的组分被 IARC鉴别为可能的或肯定的人类致癌物。
生殖毒性
无数据资料
特异性靶器官系统毒性(一次接触)
无数据资料
特异性靶器官系统毒性(反复接触)
无数据资料
吸入危险
无数据资料
潜在的健康影响
吸入 吸入有害。 该物质对组织、粘膜和上呼吸道破坏力强
摄入 误吞对人体有害。 引致灼伤。
皮肤 通过皮肤吸收有害。 引起皮肤灼伤。
眼睛 引起眼睛灼伤。
接触后的征兆和症状
该物质对粘膜组织和上呼吸道、眼睛和皮肤破坏巨大。, 痉挛,发炎,咽喉肿痛, 痉挛,发炎,支气管炎, 肺炎,
肿, 灼伤感:, 咳嗽, 喘息, 喉炎, 呼吸短促, 头痛, 恶心
附加说明
化学物质毒性作用登记: AF5958500

模块 12. 生态学资料
12.1 生态毒性
无数据资料
12.2 持久性和降解性
无数据资料
12.3 潜在的生物累积性
无数据资料
12.4 土壤中的迁移性
无数据资料
12.5 PBT 和 vPvB的结果评价
无数据资料
12.6 其它不良影响
无数据资料

模块 13. 废弃处置
13.1 废物处理方法
产品
将剩余的和不可回收的溶液交给有许可证的公司处理。
联系专业的拥有废弃物处理执照的机构来处理此物质。
与易燃溶剂相溶或者相混合,在备有燃烧后处理和洗刷作用的化学焚化炉中燃烧
受污染的容器和包装
按未用产品处置。

模块 14. 运输信息
14.1 联合国危险货物编号
欧洲陆运危规: 3261 国际海运危规: 3261 国际空运危规: 3261
14.2 联合国运输名称
欧洲陆运危规: CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S. (Bromodichloroacetic acid)
国际海运危规: CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S. (Bromodichloroacetic acid)
国际空运危规: CorrOSiVE solid, acidic, organic, n.o.s. (Bromodichloroacetic acid)
14.3 运输危险类别
欧洲陆运危规: 8 国际海运危规: 8 国际空运危规: 8
14.4 包裹组
欧洲陆运危规: II 国际海运危规: II 国际空运危规: II
14.5 环境危险
欧洲陆运危规: 否 国际海运危规 国际空运危规: 否
海洋污染物(是/否): 否
14.6 对使用者的特别提醒
无数据资料
上述信息视为正确,但不包含所有的信息,仅作为指引使用。本文件中的信息是基于我们目前所知,就正
确的安全提示来说适用于本品。该信息不代表对此产品性质的保证。
参见发票或包装条的反面。


模块 15 - 法规信息
N/A


模块16 - 其他信息
N/A

制备方法与用途

一溴二氯乙酸,又称氯乙酸,是一种用于饮用消毒的副产物。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    一溴二氯乙酸铁粉 作用下, 生成 二氯乙酸
    参考文献:
    名称:
    Fe0还原卤代乙酸:对治疗和命运的影响。
    摘要:
    为了预测天然或工程系统中的卤乙酸(HAAs)的命运,需要有关这些化合物进行的反应类型,这些反应的速率以及形成的产物的信息。鉴于许多饮用水分配系统由无衬里的铸铁管组成,HAA与元素铁(Fe0)的反应可能在确定这些系统中HAA的命运方面发挥了作用。此外,零价铁可能被证明是从氯化饮用水和废水中去除HAAs的有效处理技术。因此,分批实验用于研究四种三卤代乙酸,三氯代乙酸(TCAA),三溴代乙酸(TBAA),氯代二溴代乙酸(CDBAA)和溴代二氯代乙酸(BDCAA)与Fe0的反应。所有化合物都容易与Fe0反应,产物形成和随后消失的研究表明反应是通过顺序氢解进行的。溴优先于氯去除,而TBAA是唯一完全脱卤为乙酸的化合物。在含氯化合物中,与Fe0反应的最终产物为一氯乙酸。卤素质量平衡为95-112%,碳质量平衡为62.6-112%。三卤代乙酸降解的拟一级反应速率常数如下:BDCAA(10.6 +/- 3
    DOI:
    10.1021/es001785b
  • 作为产物:
    描述:
    1-溴-1,1-二氯-2-硝基乙烷硫酸 作用下, 反应 1.0h, 生成 一溴二氯乙酸
    参考文献:
    名称:
    Nitration Studies. XII. Nitrohalogenation of Negatively Substituted Olefins with Mixtures of Dinitrogen Tetroxide and Halogens
    摘要:
    DOI:
    10.1021/jo01078a008
点击查看最新优质反应信息

文献信息

  • In Situ Derivatization/Solid-Phase Microextraction for the Determination of Haloacetic Acids in Water
    作者:M. N. Sarrión、F. J. Santos、M. T. Galceran
    DOI:10.1021/ac000479d
    日期:2000.10.1
    An in situ derivatization solid-phase microextraction method has been developed for the determination of haloacetic acids (HAAs) in water. The analytical procedure involves derivatization of HAAs to their methyl esters with dimethyl sulfate, headspace sampling using solid-phase microextraction (SPME), and gas chromatography-ion trap mass spectrometry (GC/ITMS) determination. Parameters affecting both derivatization efficiency and headspace SPME procedure, such as the selection of the SPME coating, derivatization−extraction time and temperature, and ionic strength, were optimized. The commercially available Carboxen-poly(dimethylsiloxane) (CAR-PDMS) fiber appears to be the most suitable for the determination of HAAs. Moreover, the formation of HAA methyl esters was dramatically improved (up to 90-fold) by the addition of tetrabutylammonium hydrogen sulfate (4.7 μmol) to the sample as ion-pairing agent in the derivatization step. The precision of the in situ derivatization/HS-SPME/GC/ITMS method evaluated using an internal standard gave relative standard deviations (RSDs) between 6.3 and 11.4%. The method was linear over 2 orders of magnitude, and detection limits were compound-dependent, but ranged from 10 to 450 ng/L. The method was compared with the EPA method 552.2 for the analysis of HAAs in various water samples, and good agreement was obtained. Consequently, in situ derivatization/HS-SPME/GC/ITMS is proposed for the analysis of HAAs in water.
    开发了一种原位衍生化固相微萃取方法,用于中卤乙酸(HAAs)的测定。分析过程涉及HAAs与二甲基硫酸酯衍生化为甲酯,使用固相微萃取(SPME)进行顶空采样,以及采用气相色谱-离子阱质谱(GC/ITMS)进行测定。优化了影响衍生化效率和顶空SPME过程的参数,如SPME涂层的选择、衍生化-萃取时间与温度以及离子强度等。市售的Carboxen-聚(二甲基硅氧烷)(CAR-PDMS)纤维似乎最适合于HAAs的测定。此外,在衍生化步骤中,向样品中添加四丁基硫酸氢铵(4.7 μmol)作为离子配对剂,显著提高了HAA甲酯的形成(高达90倍)。使用内标法评估的原位衍生化/HS-SPME/GC/ITMS方法的精密度给出了相对标准偏差(RSDs)在6.3%至11.4%之间。该方法在线性范围超过2个数量级,检出限因化合物而异,但范围在10至450 ng/L之间。该方法与EPA方法552.2针对各种样中HAAs的分析进行了比较,得到了良好的一致性。因此,提出原位衍生化/HS-SPME/GC/ITMS用于中HAAs的分析。
  • Discovery of Di- and Trihaloacetamides as Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity
    作者:Chunlong Ma、Zilei Xia、Michael Dominic Sacco、Yanmei Hu、Julia Alma Townsend、Xiangzhi Meng、Juliana Choza、Haozhou Tan、Janice Jang、Maura V. Gongora、Xiujun Zhang、Fushun Zhang、Yan Xiang、Michael Thomas Marty、Yu Chen、Jun Wang
    DOI:10.1021/jacs.1c08060
    日期:2021.12.15
    enzymatic inhibition and antiviral activity but also significantly improved target specificity over caplain and cathepsins. Compared to GC-376, these new compounds did not inhibit the host cysteine proteases including calpain I, cathepsin B, cathepsin K, cathepsin L, and caspase-3. To the best of our knowledge, they are among the most selective covalent Mpro inhibitors reported thus far. The cocrystal
    主要蛋白酶 (M pro ) 是经过验证的 SARS-CoV-2 抗病毒药物靶点。许多M pro抑制剂现已进入动物模型研究和人体临床试验。然而,有待解决的一个问题是对组织蛋白酶 L 等宿主蛋白酶的靶标选择性。在这项研究中,我们描述了共价 SARS-CoV-2 M前抑制剂的合理设计,其具有新型半胱酸反应弹头,包括二乙酰胺、二乙酰胺、三乙酰胺、 2--2,2-二乙酰胺和2--2,2-二乙酰胺。有前途的主要候选药物Jun9-62-2R (二乙酰胺)和Jun9-88-6R (三乙酰胺)不仅具有有效的酶抑制和抗病毒活性,而且还显着提高了相对于Caplain和组织蛋白酶的靶标特异性。与GC-376相比,这些新化合物不抑制宿主半胱蛋白酶,包括钙蛋白酶I、组织蛋白酶B组织蛋白酶K组织蛋白酶L和caspase-3。据我们所知,它们是迄今为止报道的最具选择性的共价 M pro抑制剂之一。
  • Neumeister, Chemische Berichte, 1882, vol. 15, p. 602
    作者:Neumeister
    DOI:——
    日期:——
  • Hydrolysis of haloacetonitriles: LINEAR FREE ENERGY RELATIONSHIP, kinetics and products
    作者:Victor Glezer、Batsheva Harris、Nelly Tal、Berta Iosefzon、Ovadia Lev
    DOI:10.1016/s0043-1354(98)00361-3
    日期:1999.6
    The hydrolysis rates of mono-, di- and trihaioacetonitriles were studied in aqueous buffer solutions at different pH. The stability of haloacetonitriles decreases and the hydrolysis rate increases with increasing pH and number of halogen atoms in the molecule: The monochloroacetonitriles are the most stable and are also less affected by pH-changes, while the trihaloacetonitriles are the least stable and most sensitive to pH changes. The stability of haloacetonitriles also increases by substitution of chlorine atoms with bromine atoms. The hydrolysis rates in different buffer solutions follow first order kinetics with a minimum hydrolysis rate at intermediate pH. Thus, haloacetonitriles have to be preserved in weakly acid solutions between sampling and analysis. The corresponding haloacetamides are formed during hydrolysis and in basic solutions they can hydrolyze further to give haloacetic acids. Linear free energy relationship can be used for prediction of degradation of haloacetonitriles during hydrolysis in water solutions. (C) 1999 Elsevier Science Ltd. All rights reserved.
  • Occurrence, Synthesis, and Mammalian Cell Cytotoxicity and Genotoxicity of Haloacetamides: An Emerging Class of Nitrogenous Drinking Water Disinfection Byproducts
    作者:Michael J. Plewa、Mark G. Muellner、Susan D. Richardson、Francesca Fasano、Katherine M. Buettner、Yin-Tak Woo、A. Bruce McKague、Elizabeth D. Wagner
    DOI:10.1021/es071754h
    日期:2008.2.1
    The haloacetamides, a class of emerging nitrogenous drinking water disinfection byproduct (DBPs), were analyzed for their chronic cytotoxicity and for the induction of genomic DNA damage in Chinese hamster ovary cells. The rank order for cytotoxicity of 13 haloacetamides was DIAcAm > IAcAm > BAcAm > TBAcAm > BIAcAm > DBCAcAm > CIAcAm > BDCAcAm > DBAcAm > BCAcAm > CAcAm > DCAcAm > TCAcAm. The rank order of their genotoxicity was TBAcAm > DIAcAm IAcAm > BAcAm > DBCAcAm > BIAcAm > BDCAcAm > CIAcAm > BCAcAm > DBAcAm > CAcAm > TCAcAm. DCAcAm was not genotoxic. Cytotoxicity and genotoxicity were primarily determined by the leaving tendency of the halogens and followed the order I > Br > > CI. With the exception of brominated trihaloacetamides, most of the toxicity rank order was consistent with structure-activity relationship expectations. For di- and trihaloacetamides, the presence of at least one good leaving halogen group (I or Br but not CI) appears to be critical for significant toxic activity. Log P was not a factor for monohaloacetamides but may play a role in the genotoxicity of trihaloacetamides and possible activation of dihaloacetamides by intracellular GSH and -SH compounds. With the advent of the U.S. EPA Stage 2 DBP regulations, water utilities are considering the use of disinfectants that are alternatives to chlorine. The use of these alternative disinfectants will shift the distribution of DBP chemical classes. The emergence of new, highly toxic iodinated, nitrogenous DBPs, as illustrated by the discovery of bromoiodoacetamide as a new DBP, underscores the importance of comparative toxicity studies to assist in the overall goal of safer drinking water practice.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸