Ammonium thiocyanate is a colorless crystalline solid. It is soluble in water. The primary hazard is the threat posed to the environment. Immediate steps should be taken to limit its spread to the environment. It is used in chemical analysis, in photography, as a fertilizer, and for many other uses.
Organic nitriles are converted into cyanide ions through the action of cytochrome P450 enzymes in the liver. Cyanide is rapidly absorbed and distributed throughout the body. Cyanide is mainly metabolized into thiocyanate by either rhodanese or 3-mercaptopyruvate sulfur transferase. Cyanide metabolites are excreted in the urine. (L96)
Organic nitriles decompose into cyanide ions both in vivo and in vitro. Consequently the primary mechanism of toxicity for organic nitriles is their production of toxic cyanide ions or hydrogen cyanide. Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected. Cyanide is also known produce some of its toxic effects by binding to catalase, glutathione peroxidase, methemoglobin, hydroxocobalamin, phosphatase, tyrosinase, ascorbic acid oxidase, xanthine oxidase, succinic dehydrogenase, and Cu/Zn superoxide dismutase. Cyanide binds to the ferric ion of methemoglobin to form inactive cyanmethemoglobin. (L97)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
致癌物分类
对人类不具有致癌性(未被国际癌症研究机构IARC列名)。
No indication of carcinogenicity to humans (not listed by IARC).
Exposure to high levels of cyanide for a short time harms the brain and heart and can even cause coma, seizures, apnea, cardiac arrest and death. Chronic inhalation of cyanide causes breathing difficulties, chest pain, vomiting, blood changes, headaches, and enlargement of the thyroid gland. Skin contact with cyanide salts can irritate and produce sores. (L96, L97)
Cyanide poisoning is identified by rapid, deep breathing and shortness of breath, general weakness, giddiness, headaches, vertigo, confusion, convulsions/seizures and eventually loss of consciousness. (L96, L97)
来源:Toxin and Toxin Target Database (T3DB)
吸收、分配和排泄
硫氰酸盐离子在尿液中缓慢排泄;它不会以显著的数量分解成氰化物。/硫氰酸盐/
The thiocyanate ion is slowly excreted in the urine; it is not decomposed to cyanide in appreciable quantities. /Thiocyanate salts/
The thiocyanate ion is slowly excreted in thr urine; it is not decomposed to cyanide in appreciable quantities. The thiocyanate ion readily diffuses into all tissues. It appears early in saliva and urine.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
可以通过皮肤吸收……
Can be absorbed through skin ... .
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
治疗或正常水平在人体血液中是8.0-14.0毫克%或80.0-140.0微克/毫升。/硫氰酸盐/
Therapeutic or normal level in human blood is 8.0-14.0 mg% or 80.0-140.0 ug/mL. /Thiocyanate/
1.周国泰,化学危险品安全技术全书,化学工业出版社,1997 2.国家环保局有毒化学品管理办公室、北京化工研究院合编,化学品毒性法规环境数据手册,中国环境科学出版社.1992 3.Canadian Centre for Occupational Health and Safety,CHEMINFO Database.1998 4.Canadian Centre for Occupational Health and Safety, RTECS Database, 1989
Photoredox chemistry in the synthesis of 2-aminoazoles implicated in prebiotic nucleic acid synthesis
作者:Ziwei Liu、Long-Fei Wu、Andrew D. Bond、John D. Sutherland
DOI:10.1039/d0cc05752e
日期:——
Prebiotically plausible ferrocyanide–ferricyanide photoredox cycling oxidatively converts thiourea to cyanamide, whilst HCN is reductively homologated to intermediates which either react directly with the cyanamide giving 2-aminoazoles, or have the potential to do so upon loss of HCN from the system. Thiourea itself is produced by heating ammonium thiocyanate, a product of the reaction of HCN and hydrogen
The present invention relates to a compound of formula I
1
wherein R, X and n are defined hereinabove, and to a pharmaceutically acceptable salt thereof. The compound may be used for the treatment of diseases related to the A2A receptor.
A series of 4-thiazolinone derivatives (D1-D58) were designed and synthesized. All of the derivatives were evaluated in vitro for neuraminidase (NA) inhibitory activities against influenza virus A (H1N1), and the inhibitory activities of the five most potent compounds were further evaluated on NA from two different influenza viral subtypes (H3N2 and B), and then their in vitro anti-viral activities
The embodiments provide compounds of the general Formulae I, II, III, IV, or V as well as compositions, including pharmaceutical compositions, comprising a subject compound. The embodiments further provide treatment methods, including methods of treating a hepatitis C virus infection and methods of treating liver fibrosis, the methods generally involving administering to an individual in need thereof an effective amount of a subject compound or composition.