摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

氢氰酸 | 74-90-8

中文名称
氢氰酸
中文别名
对甲氧基苯甲腈;氰化氢
英文名称
hydrogen cyanide
英文别名
hydrocyanic acid;formonitrile
氢氰酸化学式
CAS
74-90-8
化学式
CHN
mdl
——
分子量
27.0256
InChiKey
LELOWRISYMNNSU-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    -13.4 °C
  • 沸点:
    25.6 °C
  • 密度:
    0.687 g/cm3
  • 物理描述:
    Colorless or pale blue liquid below 78°F (25.6°C), colorless gas above 78°F (25.6°C).
  • 颜色/状态:
    Water-white liquid below 26.5 °C
  • 气味:
    Bitter almond odor
  • 味道:
    Bitter, burning taste
  • 闪点:
    0 °F (-18 °C) (Closed cup)
  • 溶解度:
    Miscible (NIOSH, 2016)
  • 蒸汽密度:
    0.901 (EPA, 1998) (Relative to Air)
  • 蒸汽压力:
    742 mm Hg at 25 °C
  • 亨利常数:
    Henry's Law constant = 1.33X10-4 atm-cu m/mol at 25 °C
  • 大气OH速率常数:
    3.00e-14 cm3/molecule*sec
  • 稳定性/保质期:
    1. 气态氢氰酸一般不会发生聚合,但在有水分存在时可能会出现聚合反应。空气(氧)并不促进这种聚合反应。液态氢氰酸或其水溶液在碱性环境下、高温条件下长时间放置、受光和放射线照射、放电以及电解等情况下都会引起聚合。聚合开始后,产生的热量会引发连锁反应,加速聚合过程,并释放大量热能,导致猛烈爆炸,爆炸极限为5.6%~40%(体积)。其蒸气燃烧时火焰呈蓝色。在空气中检测氢氰酸可使用联苯胺-乙酸铜试纸(呈现蓝色)、甲基橙-氯化汞(Ⅱ) 试纸(由橙色变为粉红色)或苦味酸-碳酸钠试纸(由黄色变为茶色)。剧毒! 2. 稳定性 [17]:稳定 3. 禁配物 [18]:强氧化剂、碱类、酸类 4. 避免接触条件 [19]:受热、光照 5. 聚合危害 [20]:聚合 6. 分解产物 [21]:氮氧化物
  • 自燃温度:
    1000 °F (538 °C)
  • 腐蚀性:
    Although HCN is a weak acid and normally not considered corrosive, it has a corrosive effect under two special conditions: (1) water solutions of HCN cause transcrystalline stress-cracking of carbon steels under stress even at room temperature and in dilute solution; (2) water solutions of HCN containing sulfuric acid as a stabilizer severely corrode steel above 40 °C and stainless steels above 80 °C.
  • 燃烧热:
    642 kJ/mol
  • 汽化热:
    25.2 kJ/mol
  • 电离电位:
    13.60 eV
  • 聚合:
    Can polymerize explosively at 50-60 °C or in the presents of traces of alkali.
  • 气味阈值:
    Odor Threshold Low: 2.0 [mmHg]; Odor Threshold High: 10.0 [mmHg]
  • 折光率:
    Index of refraction: 1.2614 at 20 °C/D
  • 解离常数:
    pKa = 9.2
  • 保留指数:
    319.9 ;320

计算性质

  • 辛醇/水分配系数(LogP):
    0.1
  • 重原子数:
    2
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    23.8
  • 氢给体数:
    0
  • 氢受体数:
    1

ADMET

代谢
氰化物被人体摄入的报告和职业暴露的报告表明,氰化物可以转化为硫氰酸盐。当通过静脉注射给予硫供体来治疗氰化物中毒时,氰化物向硫氰酸盐的转化会被增强。硫供体必须含有硫烷硫,即一个硫原子与另一个硫原子相连(例如,硫代硫酸钠)。在罗丹酶的转化过程中,一个硫原子从供体转移到酶上,形成一个过硫化物中间体。然后,过硫化物的硫从酶转移到氰化物上,生成硫氰酸盐。硫氰酸盐随后作为主要代谢物在尿液中容易排出。一旦形成硫氰酸盐,它就不会再转化回氰化物。/氰化物/
Reports of ingestion of cyanides by humans and reports of occupational exposure ... indicate that cyanide is transformed into thiocyanate. ... Conversion of cyanide to thiocyanate is enhanced when cyanide poisoning is treated by intravenous administration of a sulfur donor ... . The sulfur donor must have a sulfane sulfur, a sulfur bonded to another sulfur (e.g., sodium thiosulfate). During conversion by rhodanese, a sulfur atom is transferred from the donor to the enzyme, forming a persulfide intermediate. The persulfide sulfur is then transferred from the enzyme to cyanide, yielding thiocyanate. Thiocyanate is then readily excreted in the urine as the major metabolite. Once thiocyanate is formed, it is not converted back to cyanide. /Cyanide/
来源:Hazardous Substances Data Bank (HSDB)
代谢
氰化物的代谢已经在动物中进行了研究。提出的代谢途径包括:(1) 主要途径,通过罗丹酶或3-巯基丙酸硫转移酶转化为硫氰酸盐;(2) 转化为2-氨基噻唑啉-4-羧酸;(3) 包含进入一碳代谢池;(4) 与羟钴胺结合形成氰钴胺(维生素B12)。硫氰酸盐已被证明占给药氰化物剂量的60至80%,而2-氨基噻唑啉-4-羧酸约占剂量的15%。/氰化物/
The metabolism of cyanide has been studied in animals. The proposed metabolic pathways ... are (1) the major pathway, conversion to thiocyanate by either rhodanese or 3-mercaptopyruvate sulfur transferase; (2) conversion to 2-aminothiazoline-4-carboxylic acid; (3) incorporation into a 1-carbon metabolic pool; or (4) combining with hydroxocobalamin to form cyanocobalamin (vitamin B12). Thiocyanate has been shown to account for 60 to 80% of an administered cyanide dose while 2-aminothiazoline-4-carboxylic acid accounts for about 15% of the dose. /Cyanide/
来源:Hazardous Substances Data Bank (HSDB)
代谢
尽管氰化物可以与血液中的物质如高铁血红蛋白相互作用,但大部分氰化物的代谢发生在组织中。氰化物在哺乳动物系统中通过一条主要途径和几条次要途径进行代谢。氢氰化物和氰化物的主要代谢途径是在肝脏中通过线粒体酶硫氰酸酶进行解毒,该酶催化硫代硫酸盐的硫烷硫转移到氰离子,形成硫氰酸盐……。大约80%的氰化物通过这条途径解毒。限速步骤是硫代硫酸盐的量。虽然硫氰酸酶存在于所有组织的线粒体中,但硫氰酸酶的种类和组织分布高度可变。一般来说,硫氰酸酶在肝脏、肾脏、大脑和肌肉中的含量最高,但硫代硫酸盐的供应有限。在大鼠鼻粘膜组织中,尤其是嗅觉区域,硫氰酸酶的浓度比肝脏高7倍(按每毫克线粒体蛋白计算)。狗的整体硫氰酸酶活性低于猴子、大鼠和兔子。还有许多其他的硫转移酶也可以代谢氰化物,而携带有机硫的硫烷形式的白蛋白也可以协助氰化物转化为硫氰酸盐。氰化物和硫氰酸盐也可以通过几条次要途径进行代谢,包括氰化物与羟钴胺(维生素B12a)结合生成氰钴胺(维生素B12)以及氰化物与胱氨酸的非酶结合,形成2-亚胺噻唑啉-4-羧酸,这似乎是未经进一步改变的排出。
Although cyanide can interact with substances such as methemoglobin in the bloodstream, the majority of cyanide metabolism occurs within the tissues. Cyanide is metabolized in mammalian systems by one major route and several minor routes. The major route of metabolism for hydrogen cyanide and cyanides is detoxification in the liver by the mitochondrial enzyme rhodanese, which catalyses the transfer of the sulfane sulfur of thiosulfate to the cyanide ion to form thiocyanate ... . About 80% of cyanide is detoxified by this route. The rate-limiting step is the amount of thiosulfate. While rhodanese is present in the mitochondria of all tissues, the species and tissue distributions of rhodanese are highly variable. In general, the highest concentrations of rhodanese are found in the liver, kidney, brain, and muscle, but the supply of thiosulfate is limited. Rhodanese is present in rat nasal mucosal tissues, particularly in the olfactory region, at a 7-fold higher concentration (on a per milligram of mitochondrial protein basis) than in the liver. Dogs have a lower overall activity of rhodanese than monkeys, rats, and rabbits. A number of other sulfur transferases can also metabolize cyanide, and albumin, which carries elemental sulfur in the body in the sulfane form, can assist in the catalysis of cyanide to thiocyanate as well. Cyanide and thiocyanate can also be metabolized by several minor routes, including the combination of cyanide with hydroxycobalamin (vitamin B12a) to yield cyanocobalamin (vitamin B12) and the non-enzymatic combination of cyanide with cystine, forming 2-iminothiazoline-4-carboxylic acid, which appears to be excreted without further change. /Cyanide/
来源:Hazardous Substances Data Bank (HSDB)
代谢
氢氰酸被吸收后主要作为硫氰酸盐通过尿液排出,但微量的游离氢氰酸也可能未经改变通过肺部、唾液、汗液或尿液排出,或者在呼出的空气中作为二氧化碳,或者在唾液和汗液中作为β-硫氰丙氨酸。/氰化物/
While absorbed cyanide is principally excreted as thiocyanate in the urine, traces of free hydrogen cyanide may also be excreted unchanged in the lungs, saliva, sweat, or urine, as carbon dioxide in expired air, or as beta-thiocyanoalanine in saliva and sweat. /Cyanide/
来源:Hazardous Substances Data Bank (HSDB)
代谢
有机腈通过肝脏中的细胞色素P450酶的作用转化为氰化物离子。氰化物迅速被吸收并在全身分布。氰化物主要通过罗丹酶或3-巯基丙酸硫转移酶代谢成硫氰酸盐。氰化物代谢物通过尿液排出。
Organic nitriles are converted into cyanide ions through the action of cytochrome P450 enzymes in the liver. Cyanide is rapidly absorbed and distributed throughout the body. Cyanide is mainly metabolized into thiocyanate by either rhodanese or 3-mercaptopyruvate sulfur transferase. Cyanide metabolites are excreted in the urine. (L96)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
氢氰酸是一种无色或淡蓝色液体或气体,有微弱的苦杏仁味。氢氰酸主要用于生产诸如己二腈、甲基丙烯酸甲酯、螯合剂、氯氰尿酸、蛋氨酸及其羟基类似物、以及钠和钾氰化物等物质。氢氰酸还用作船舶、铁路车辆、大型建筑、粮仓和面粉厂以及豌豆和种子在真空室熏蒸的熏蒸剂。氢氰酸在含有氮的聚合物,如某些塑料、聚氨酯和羊毛的不完全燃烧过程中形成。氢氰酸也存在于香烟烟雾中。 人体研究:人体氰化物中毒的主要靶标是心血管、呼吸和中央神经系统。内分泌系统也可能是长期毒性的潜在靶标,因为持续暴露于硫氰酸盐会阻止甲状腺吸收碘并作为促甲状腺肿大剂。严重的急性中毒后,可能会出现神经精神表现和帕金森病类型的疾病。烟草烟雾中的氰化物被认为是烟草酒精弱视的促成因素。在职业环境中长期暴露于低浓度的氰化物可能会导致与中央神经系统效应相关的一系列症状。氰化物对皮肤和眼睛有轻微的刺激性。 动物研究:氰化物毒性特征的主要表现是其通过所有给药途径的高度急性毒性,具有非常陡峭且与剂量和速率相关的效应曲线,以及可能通过主要代谢物和解毒产物硫氰酸盐介导的慢性毒性。氰化物离子在人类和动物中的毒性效应通常是相似的,并且认为是由细胞色素氧化酶的失活和细胞呼吸的抑制以及随之而来的组织缺氧引起的。动物氰化物中毒的主要靶标是心血管、呼吸和中央神经系统。内分泌系统也可能是长期毒性的潜在靶标,因为持续暴露于硫氰酸盐会阻止甲状腺吸收碘并作为促甲状腺肿大剂。在一项为期13周的重复剂量毒性研究中,将氰化物添加到饮水中,大鼠或小鼠的大脑或甲状腺没有与中央神经系统效应或组织病理学效应相关的临床体征。雄性大鼠的生殖道有轻微的变化。这项研究对神经毒性的检查仅限于临床观察和尸检的光学显微镜。为数不多的专门用于研究神经毒性的研究中,报告在暴露水平为大鼠每天1.2毫克氰化物/千克体重和山羊每天0.48毫克氰化物/千克体重时出现不良影响,但这些研究存在缺陷,无法进行定量评估。 关于重复剂量毒性吸入的浓度-反应关系的表征(主要与职业环境相关),在三项单独的大鼠研究中,大鼠暴露于在生理pH下迅速水解为氢氰酸的丙酮腈,在浓度高达211毫克/立方米(相当于67毫克氢氰酸/立方米)时,没有出现不良的全身效应。剂量效应曲线的陡峭程度可以通过观察部分时间暴露于225毫克丙酮腈/立方米(71毫克氢氰酸/立方米)的大鼠中30%的死亡率来说明。 生态毒性研究:暴露于环境中通常存在的低浓度氰化物(环境空气中<1微克/立方米;水中<10微克/升)不太可能产生不良影响。
IDENTIFICATION AND USE: Hydrogen cyanide is a colorless or pale blue liquid or gas with a faint bitter almond like odor. Hydrogen cyanide is used primarily in the production of substances such as adiponitrile, methyl methacrylate, chelating agents, cyanuric chloride, methionine and its hydroxylated analogues, and sodium and potassium cyanide. Hydrogen cyanide is also used as a fumigant in ships, railroad cars, large buildings, grain silos, and flour mills, as well as in the fumigation of peas and seeds in vacuum chambers. Hydrogen cyanide is formed during the incomplete combustion of nitrogen-containing polymers, such as certain plastics, polyurethanes, and wool. Hydrogen cyanide is also present in cigarette smoke. HUMAN STUDIES: The primary targets of cyanide toxicity in humans are the cardiovascular, respiratory, and central nervous systems. The endocrine system is also a potential target for long term toxicity, as a function of continued exposure to thiocyanate, which prevents the uptake of iodine in the thyroid and acts as a goitrogenic agent. Sequelae after severe acute intoxications may include neuropsychiatric manifestations and Parkinson type disease. Cyanide from tobacco smoke has been implicated as a contributing factor in tobacco alcohol amblyopia. Long term exposure to lower concentrations of cyanide in occupational settings can result in a variety of symptoms related to central nervous system effects. Cyanides are weakly irritating to the skin and eye. ANIMAL STUDIES: The principal features of the toxicity profile for cyanide are its high acute toxicity by all routes of administration, with a very steep and rate-dependent dose effect curve, and chronic toxicity, probably mediated through the main metabolite and detoxification product, thiocyanate. The toxic effects of cyanide ion in humans and animals are generally similar and are believed to result from inactivation of cytochrome oxidase and inhibition of cellular respiration and consequent histotoxic anoxia. The primary targets of cyanide toxicity in animals are the cardiovascular, respiratory, and central nervous systems. The endocrine system is also a potential target for long-term toxicity, as a function of continued exposure to thiocyanate, which prevents the uptake of iodine in the thyroid and acts as a goitrogenic agent. In a 13 week repeated-dose toxicity study in which cyanide was administered in drinking-water, there were no clinical signs associated with central nervous system effects or histopathological effects in the brain or thyroid of rats or mice. There were slight changes in the reproductive tract in male rats. The examination of neurotoxicity in this study was limited to clinical observation and optical microscopy in autopsy. The few available studies specifically intended to investigate neurotoxicity, while reporting adverse effects at exposure levels of 1.2 mg cyanide/kg body weight per day in rats and 0.48 mg cyanide/kg body weight per day in goats, suffer from weaknesses that preclude their quantitative assessment. In relation to characterization of concentration-response for repeated-dose toxicity for inhalation (relevant principally to the occupational environment), in three separate studies in rats, there were no adverse systemic effects in rats exposed to acetone cyanohydrin, which is rapidly hydrolyzed to hydrogen cyanide at physiological pH, at concentrations up to 211 mg/cu m (corresponding to a concentration of 67 mg hydrogen cyanide/cu m). The steepness of the dose effect curve is illustrated by the observation of 30% mortality among rats exposed part of the day to 225 mg acetone cyanohydrin/cu m (71 mg hydrogen cyanide/cu m). ECOTOXICITY STUDIES: Adverse effects of exposure to the low concentrations of cyanide that are generally present in the general environment (<1 ug/cu m in ambient air; <10 ug/L in water) are unlikely.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
有机腈在体内和体外都会分解成氰化物离子。因此,有机腈的主要毒性机制是它们产生有毒的氰化物离子或氢氰酸。氰化物是电子传递链第四个复合体(存在于真核细胞线粒体膜中)中的细胞色素c氧化酶的抑制剂。它与这种酶中的三价铁原子形成复合物。氰化物与这种细胞色素的结合阻止了电子从细胞色素c氧化酶传递到氧气。结果,电子传递链被中断,细胞无法再通过有氧呼吸产生ATP能量。主要依赖有氧呼吸的组织,如中枢神经系统和心脏,受到特别影响。氰化物也通过与过氧化氢酶、谷胱甘肽过氧化物酶、变性血红蛋白、羟钴胺素、磷酸酶、酪氨酸酶、抗坏血酸氧化酶、黄嘌呤氧化酶、琥珀酸脱氢酶以及Cu/Zn超氧化物歧化酶结合,产生一些毒性效应。氰化物与变性血红蛋白中的三价铁离子结合形成无活性的氰化变性血红蛋白。
Organic nitriles decompose into cyanide ions both in vivo and in vitro. Consequently the primary mechanism of toxicity for organic nitriles is their production of toxic cyanide ions or hydrogen cyanide. Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected. Cyanide is also known produce some of its toxic effects by binding to catalase, glutathione peroxidase, methemoglobin, hydroxocobalamin, phosphatase, tyrosinase, ascorbic acid oxidase, xanthine oxidase, succinic dehydrogenase, and Cu/Zn superoxide dismutase. Cyanide binds to the ferric ion of methemoglobin to form inactive cyanmethemoglobin. (L97)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌物分类
对人类无致癌性(未列入国际癌症研究机构IARC清单)。
No indication of carcinogenicity to humans (not listed by IARC).
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 健康影响
短时间内接触高浓度的氰化物会损害大脑和心脏,甚至可能导致昏迷、癫痫、呼吸暂停、心脏骤停和死亡。长期吸入氰化物会引起呼吸困难、胸痛、呕吐、血象改变、头痛和甲状腺肿大。皮肤接触氰化物盐可能会刺激并产生溃疡。
Exposure to high levels of cyanide for a short time harms the brain and heart and can even cause coma, seizures, apnea, cardiac arrest and death. Chronic inhalation of cyanide causes breathing difficulties, chest pain, vomiting, blood changes, headaches, and enlargement of the thyroid gland. Skin contact with cyanide salts can irritate and produce sores. (L96, L97)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 暴露途径
吸入,皮肤吸收,吞食,皮肤和/或眼睛接触
inhalation, skin absorption, ingestion, skin and/or eye contact
来源:The National Institute for Occupational Safety and Health (NIOSH)
吸收、分配和排泄
氢氰酸作为氢氰化氢,在吸入暴露后迅速被吸收(几秒钟内)。人类在通过正常呼吸吸入气体后,肺部保留了58%的氢氰化氢。
Cyanide as hydrogen cyanide is rapidly absorbed (within seconds) following inhalation exposure. Humans retained 58% of hydrogen cyanide in the lungs after inhaling the gas through normal breathing.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
一旦氰化物被吸收,它就会通过血液迅速分布到全身。在一例因吸入氢氰气体而死亡男性的肺、心脏、血液、肾脏和大脑中,氰化氢的组织水平分别为0.75、0.42、0.41、0.33和0.32毫克/100克组织。在另一例中,一名因吸入氢氰气体而死亡男性的组织氰化物水平报告为血液中0.5毫克/100毫升,肾脏、大脑和肝脏中分别为0.11、0.07和0.03毫克/100克。尿液中的氰化物水平报告为0.2毫克/100毫升,胃内容物中发现了0.03毫克/100克。
Once cyanide is absorbed, it is rapidly distributed by the blood throughout the body. Tissue levels of hydrogen cyanide were 0.75, 0.42, 0.41, 0.33, and 0.32 mg/100 g of tissue in the lung, heart, blood, kidney, and brain, respectively, in a man who died following inhalation exposure to hydrogen cyanide gas. ... In another case, tissue cyanide levels from a man who died from inhalation of hydrogen cyanide were reported as 0.5 mg per 100 mL of blood and 0.11, 0.07, and 0.03 mg/100 g in the kidney, brain, and liver, respectively. Urinary cyanide levels were reported as 0.2 mg/100 mL, and 0.03 mg/100 g were found in the gastric contents ... .
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
暴露于356或1180 ppm氢氰酸气体中的老鼠,通过吸入,分别在10分钟和5分钟内死亡。在呼吸停止后立即采集的样本显示,氰化物的组织分布模式并未随着所用浓度的不同而变化。对两组剂量数据进行平均后,组织浓度(以湿重每克计)报告为:肺中4.4,血液中3.0,肝脏中2.15,大脑中1.4,脾脏中0.68。因此,观察到最高的氰化物浓度在肺部。
Rats exposed /by inhalation/ to hydrogen cyanide gas at 356 or 1,180 ppm died within 10 and 5 minutes, respectively. Samples taken immediately after respiration stopped showed that the pattern of tissue distribution of cyanide did not vary with the concentration used. In averaging data for both dose groups, tissue concentrations, reported as ug/g wet weight (ww), were 4.4 in the lungs, 3.0 in the blood, 2.15 in the liver, 1.4 in the brain, and 0.68 in the spleen. Thus, the highest cyanide concentrations were observed in the lung.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
通过吸入方式暴露于2,714 ppm氢氰酸5分钟的兔子,血液中的氰化物水平为170/100 mL,血浆中的水平为48微克/100 mL,组织中氰化物的水平(单位为微克/100克)为:肝脏0,肾脏6,大脑50,心脏62,肺54,脾脏6……六只兔子通过皮肤接触(接触面积未报告)33.75毫克/千克氢氰酸,其血液和血清中的氰化物水平分别为310和144微克/分升,组织中氰化物的水平(微克/100克)为:肝脏26,肾脏66,大脑97,心脏110,肺120,脾脏21。
Rabbits exposed /by inhalation/ to hydrogen cyanide at 2,714 ppm for 5 minutes had cyanide levels of 170/100 mL in blood and 48 ug/100 mL in plasma, and tissue levels (in units of ug/100 g) of 0 in the liver, 6 in the kidney, 50 in the brain, 62 in the heart, 54 in the lung, and 6 in the spleen. ... Six rabbits exposed dermally (area not reported) to 33.75 mg CN/kg as hydrogen cyanide had blood and serum cyanide levels of 310 and 144 ug/dL, respectively, and tissue levels (ug/100 g) of 26 in liver, 66 in kidney, 97 in brain, 110 in heart, 120 in lungs, and 21 in the spleen.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    6.1
  • 危险品标志:
    C,Xi,T
  • 安全说明:
    S16,S36/37,S38,S45,S60,S61,S7/9
  • 危险类别码:
    R26/27/28,R26,R50/53,R12
  • WGK Germany:
    3
  • 海关编码:
    2926909090
  • 包装等级:
    III
  • 危险类别:
    6.1(a)
  • 危险品运输编号:
    1051

SDS

SDS:e1d44565604621821e488c605c70370b
查看
国标编号: 61003
CAS: 74-90-8
中文名称: 氰化氢
英文名称: hydrogen cyanide
别 名: 氢氰酸
分子式: HCN
分子量: 27.03
熔 点: -13.2℃ 沸点:25.7℃
密 度: 相对密度(水=1)0.69;
蒸汽压: -17.8℃
溶解性: 溶于水、醇、醚等
稳定性: 稳定
外观与性状: 无色气体或液体,有苦杏仁味
危险标记: 13(无机剧毒品),7(易燃液体)
用 途: 用于丙烯腈和丙烯酸树脂及农药杀虫剂的制造

2.对环境的影响 一、健康危害 侵入途径:吸入、食入。 健康危害:抑制呼吸酶,造成细胞内窒息。急性中毒:短时间内吸入高浓度氰化氢气体,可立即呼吸停止而死亡。非骤死者临床分为4期,前驱期有粘膜刺激、呼吸加快加深、乏力、头痛,口服有舌尖、口腔发麻等;呼吸困难、血压升高、皮肤粘膜呈鲜红色等;惊厥期出现抽搐、昏迷、呼吸衰竭;麻痹期全身肌肉松弛,呼吸心跳停止而死亡。可致眼、皮肤灼伤,吸收引起中毒。慢性影响:神经衰弱综合征、皮炎。 各种温血动物的中毒表现基本相同,呼吸先快后慢,瘫痪、侧卧、痉挛、窒息、呼吸停止、死亡,一般呼吸停止5~10分钟,心跳停止。猫、狗、猴还有呕吐表现。 氰化氢具有速杀性。中毒严重时,能使人很快死亡。低浓度时,无积累作用。当空气中浓度低于0.04mg/L时,对人员长时间的作用也无危险。初闻到时,有不同程度的刺激作用。口内有苦杏仁味,口舌发麻,紧接着头痛、胸闷、呼吸困难、身体不支、意志消失、强直性痉挛,最后全身麻痹以至死亡。 二、毒理学资料及环境行为 急性中毒:LD50810μg/kg(大鼠静脉);3700μg/kg(小鼠经口);LC50357mg/m3,5分钟(小鼠吸入) 污染来源:氰化物主要用于电镀业(镀铜、镀金、镀银),采矿业(提取金、银),船舱烟熏灭鼠,制造各种树脂如硝基丙烯酸类单体,制造己二胺及腈类。也可作为中间产物产生,在焦炭炉中也可产生氰化氢。 代谢和降解:游离氰基在体内主要代谢途径是在硫氰化酶(或β巯基丙酮酸转硫酶)的催化作用下,与硫起加成反应,转变成毒性很低的SCN(只有CN-毒性的1/200)。然后由尿、唾液、汗液等排出体外。 游离氰基还可与体内含钴的化合物如羟钴胺(维生素B12)结合形成无毒的氰钴化合物。因此临床上有用羟钴胺或依地酸二钴抢救CN-急性中毒的报告。 人体对CN-有较强的解毒机能,氰化物是非蓄积性毒物。当不致产生中毒剂量的少量外源性氰根进入机体后,可被迅速转化为无毒或低毒物质排出体外。 氰化物在地面水中很不稳定,当水的pH值大于7和有氧存在的条件下,可被氧化生成碳酸盐与氨。地面水中带存在着能够分解利用氰化物的微生物,亦可将氰经生物氧化用途转化为碳酸盐与氨。因此氰化物在地面水中的自净过程相当迅速,但水体中氰化物的自净过程还要受水温,水的曝气程度(搅动)、pH、水面大小及深度等因素影响。 土壤对氰化物出有很强的净化能力。进入寺壤的氰化物,除逸散至空气中的外,一部分被植物吸收,在植物体内被同化或氧化分解。存留于土壤中并部分在微生物的作用下,可被转化为碳酸盐、氨和甲酸盐。当氰化物持续污染时,土壤微生物经驯化、毓可产生相适应的微生物群,对氰的净化起巨大作用。因此有些低浓度含氰工业废水长期进行污水灌溉的地区,土壤中的氰含量几乎没有积累。 残留与蓄积:自然界对氰化物的污染有很强的净化作用,因此,一般来说外源氰不易在环境和机体中积累。只有在特定条件下(事故排放、高浓度持续污染),氰的污染量超过环境的净化能力时,才能在环境中残留、蓄积,从而构成对人和生物的潜在危害。 迁移转化:氰化物广泛地存在于自然界中。动植物体内都含有一些氰类物质,有些植物如苦杏仁、白果、果仁、木薯、高梁等含有相当量的含氰糖甙。它水解后释放出洲离的氰化氢,在一些普通粮食、蔬菜中,也可检出微量氰。 土壤中也普遍含有氰化物,并随土壤深度的增加而递减,其含量为0.003-0.130mg/kg。天然土壤中的氰化物主要来自土壤腐植质。腐植质是一类复杂的有机化合物,其核心由多元酚聚合而成,并含有一定数量的氮化合物。在土壤微生物作用下,可以生成氰和酚,因此土壤中氰的本底含量与其中有机质的含量密切相关。 由于氰化氢及易挥发,多数氰化物易溶于水,因此排入自然环境中的氰化物易被水(或大气)淋溶稀释、扩散,迁移能力强。氰化氢和简单氰化物在地面水中很不稳定,氰化氢易逸入空气中;或当水的pH值大于7和有氧存在的条件下,亦可被氧化而生成碳酸盐与氨。简单氰化物在水中很易水解而形成氰化氢。水中如含无机酸,即使是二氧化碳溶于水中生成的碳酸(弱酸),亦可加速此分解过程。 HCN是有苦杏仁味的气味,极易扩散,易溶于水而成氢氰酸;氰化物一般为无色晶体,在空气中易潮解并有HCN的微弱臭味,能使水产生杏仁臭。氰化物中毒的症状为:轻者有粘膜刺激,唇舌麻木头痛、眩晕、下肢无力、胸部有压迫感、恶心、呕吐、血压上升、心悸、气喘等。重者呼吸不规则,逐渐昏迷、痉挛、大小便失禁、血压下降、迅速发生呼吸障碍而死亡。 危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。长期放置则因水分而聚合,聚合物本身有自催化作用,可引起爆炸。 燃烧分解产物:氰化氢、氮氧化物。 3.现场应急监测方法 ①便携式气体检测仪器:胶比电解式;②常用快速化学分析方法:甲基橙检测管法、联苯胺检测管法、指示笔法《突发性环境污染事故应急监测与处理处置技术》万本太主编 4.实验室监测方法 异烟酸-吡唑啉酮分光光度法(HJ/T28-1999,固定污染源排气) 联邻甲苯胺检气管比长度法《空气中有害物质的测定方法》(第二版)杭士平主编 5.环境标准 中国(TJ36-79) 车间空气中有害物质的最高容许浓度 0.3mg/m3[皮] 前苏联(1974) 居民区大气中有害物最大允许浓度 0.01mg/m3(昼夜均值) 中国(GB16297-1996) 大气污染物综合排放标准 ①最高允许排放浓度: 2.3mg/m3(表1);1.9mg/m3(表2) ②最高允许排放速率(kg/h): 二级0.18~5.5(表1);0.15~4.6(表2) 三级0.28~8.3(表1);0.24~7.0(表2) ③无组织排放监控浓度限值: 0.024mg/m3(表2);0.030mg/m3(表1) 6.应急处理处置方法 一、泄漏应急措施 对泄漏物处理必须戴好防毒面具与手套,扫起,倒至大量水中。加入过量NaClO或漂白粉,放置24小时,确认氰化物全部分解,稀释后放入废水系统。污染区用NaClO溶液或漂白粉浸光24小时后,用大量水冲洗,洗水放入废水系统统一处理。对HCN则应将气体送至通风橱或将气体导入碳酸钠溶液中,加等量的NaClO,以6mol/L NaOH中和,污水放入废水系统做统一处理。 废弃物处置方法:废料放入碱性介质中,通氯气或加次氯酸盐使之转化成氨气和二氧化碳。还可以采用控制焚烧法把氰化物完全破坏。氨氧化过程的废气中含有可回收的氢氰酸。 二、防护措施 呼吸系统防护:可能接触毒物时,应该佩戴隔离式呼吸器。紧急事态抢救或撤离时,必须佩戴氧气呼吸器。 眼睛防护:呼吸系统防护中已作防护。 身体防护:穿连衣式胶布防毒衣。 手防护:戴橡胶手套。 其它:工作现场禁止吸烟、进食和饮水。保持良好的卫生习惯。车间应配备急救设备及药品。作业人员应学会自救互救。 三、急救措施 皮肤接触:立即脱去被污染的衣着,用流动清水或5%硫代硫酸钠溶液彻底冲洗至少20分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸心跳停止时,立即进行人工呼吸(勿用口对口)和胸外心脏按压术,给吸入亚硝酸异戊酯,就医。 食入:饮足量温水,催吐,用1:5000高锰酸钾或5%硫代硫酸钠溶液洗胃。就医。 灭火方法:切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体。消防人员必须穿戴全身专用防护服,佩戴气氛呼吸器,在安全距离以外或有防护措施处操作。灭火剂:干粉、抗溶性泡沫、二氧化碳。用水灭火无效,但须用水保持火场容器冷却。用雾状水驱散蒸气。


制备方法与用途

制备方法

氰化钠法将氰化钠与硫酸直接发生反应,经冷凝并加入少量无机酸作稳定剂,即得氢氰酸产品。化学方程式为:2NaCN + H₂SO₄ → Na₂SO₄ + 2HCN。

合成制备方法

同样地,氰化钠法将氰化钠与硫酸直接反应,经冷凝并加入少量无机酸作稳定剂,即得氢氰酸产品。化学方程式为:2NaCN + H₂SO₄ → Na₂SO₄ + 2HCN。

用途简介

氢氰酸主要用于以下几个方面:

  1. 可作为灭柑橘树害虫的特效农药。
  2. 制造氰化物,用于仓库和船舶等消毒。
  3. 还用于合成丁腈橡胶、合成纤维、塑料、有机玻璃及钢铁表面渗氮。
  4. 用于丙烯腈和丙烯酸树脂及农药杀虫剂的制造。
用途

氢氰酸的主要用途包括:

  1. 可作为灭柑橘树害虫的特效农药,制造氰化物,用于仓库和船舶等消毒,并广泛应用于合成丁腈橡胶、合成纤维、塑料、有机玻璃及钢铁表面渗氮。
  2. 还可用于丙烯腈和丙烯酸树脂及农药杀虫剂的制造。[23]

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
    —— carbon nitride 2074-87-5 CN 26.0177
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    —— carbon nitride 2074-87-5 CN 26.0177
    [13C]氰化氢 [13C]hydrogen cyanide 20722-83-2 CHN 28.0146
    —— Blausaeure 13127-85-0 CHN 28.0189

反应信息

  • 作为反应物:
    描述:
    氢氰酸 作用下, 以 为溶剂, 反应 6.0h, 生成 氯化氰
    参考文献:
    名称:
    METHOD FOR PRODUCING CYANOGEN-HALIDE, CYANATE ESTER COMPOUND AND METHOD FOR PRODUCING THE SAME, AND RESIN COMPOSITION
    摘要:
    一种用于高效生产抑制副作用的氰卤化物,以及以高收率生产高纯度氰酸酯化合物的方法包括将卤素分子与含有氢氰酸和/或金属氰化物的水溶液接触,使得氢氰酸和/或金属氰化物与卤素分子在反应溶液中发生反应以获得氰卤化物,其中基于1摩尔卤素分子使用超过1摩尔的氢氰酸或金属氰化物,当未反应的氢氰酸或未反应的金属氰化物的物质量定义为摩尔(A),生成的氰卤化物的物质量定义为摩尔(B),反应在(A):(A)+(B)介于0.00009:1和0.2:1之间的状态中终止。
    公开号:
    US20150299110A1
  • 作为产物:
    描述:
    甲基自由基氧化亚氮 作用下, 1042.9 ℃ 、48.3 kPa 条件下, 生成 氢氰酸
    参考文献:
    名称:
    Investigation of the CH3 + NO reaction in shock waves
    摘要:
    AbstractThe reaction of CH3 + NO was investigated behind incident shock waves at temperatures between 1300 K and 2080 K. The formation of H atoms and of HCN was studied by time resolved UV absorption and by IR‐emission. OH measurements of Hoffmann et al. were reevaluated with the rate constant of this work. The rate constant for the reaction of CH3 + NO can be expressed byk = (4.0 ± 0.8)·1012 exp (−(8500 ± 500) K/T) cm3 mol−1 s−1.HCN was found to be the main final product of the reaction of CH3 + NO in the temperature range covered. The contribution of the H forming channels is around 20–25% to the main channel.
    DOI:
    10.1002/bbpc.19940980516
  • 作为试剂:
    描述:
    苯乙炔 在 tetracyanonickelate(II) sodium tetrahydroborate 、 氢氰酸 作用下, 以 为溶剂, 生成 α-甲基苯腈
    参考文献:
    名称:
    过渡金属氰基络合物的研究。第4部分。第6A和8组的氰化物氢化物配合物
    摘要:
    报道了新的络合物K 4 [MoH(CN)7 ]·2H 2 O以及通过1 H,13 C nmr和振动光谱表征的特征。还提供了[MH(CN)5 ] 3–(M = Rh或Ir)的振动和nmr数据。讨论了制备其他氰化物氢化物的尝试。报道了上述物质与小分子和不饱和烃的反应。
    DOI:
    10.1039/dt9850000717
点击查看最新优质反应信息

文献信息

  • Electronic Effects in Asymmetric Catalysis:  Structural Studies of Precatalysts and Intermediates in Rh-Catalyzed Hydrogenation of Dimethyl Itaconate and Acetamidocinnamic Acid Derivatives Using <i>C</i><sub>2</sub>-Symmetric Diarylphosphinite Ligands
    作者:T. V. RajanBabu、Branko Radetich、Kamfia K. You、Timothy A. Ayers、Albert L. Casalnuovo、Joseph C. Calabrese
    DOI:10.1021/jo9901182
    日期:1999.5.1
    largely unaffected by electronic effects, which suggests that other explanations have to be sought for the electronic amplification of enantioselectivity. One possibility is a change in the diastereomeric equilibrium between the initially formed [substrate]Rh(+)[phosphinite] complexes as a function of electronic effect of the ligand. In the Rh-catalyzed hydrogenation of dimethyl itaconate, we have examined
    的Rh(I)的对映选择性的催化的脱氢氨基酸衍生物的不对称氢化和衣康酸二甲酯可以通过对来自碳水化合物以及反式 - 环己烷-1,2-二醇衍生的邻位diarylphosphinites的芳香环的取代基的合适的选择来增强。例如,使用在磷处具有给电子双(3,5-二甲基苯基)基团的次膦酸盐在这些反应中提供了高ee,而吸电子芳基取代基降低了对映选择性。在本文中,我们试图从两个层面上阐明这些非凡的电子效应的起源。首先,确定了多种预催化剂([亚膦酸酯](2)Rh(+)[二烯烃] X(-))的晶体结构,并对其结构进行了详细研究,以检查电子效应(如果有),这些分子的基态构象。对其中六种配合物的研究表明,这些预催化剂的总体构象特征在很大程度上不受电子效应的影响,这表明对电子选择性的对映选择性必须寻求其他解释。一种可能是初始形成的[底物] Rh(+)[亚膦酸酯]配合物之间的非对映异构体平衡随配体电子效应的变化而变化
  • Ethics and Foreign Policy: The Antinomies of New Labour's ‘Third Way’ in Sub-Saharan Africa
    作者:Rita Abrahamsen、Paul Williams
    DOI:10.1111/1467-9248.00312
    日期:2001.6

    This article explores how New Labour has attempted to implement its ideas about a ‘third way’ foreign policy in sub-Saharan Africa. Through an examination of British foreign policy practices, we explore whether New Labour has succeeded in finding a ‘third way’ between traditional views of socialism and capitalism in Africa. In particular, the article focuses on New Labour's attempts to build peace, prosperity and democracy on the African continent. We conclude that although New Labour's claims to add an ‘ethical dimension’ to foreign policy have succeeded in giving Britain a higher profile in the international arena, the implementation of such a policy is intrinsically difficult. These difficulties in turn arise from the antinomies embodied in New Labour's policy, or more specifically from the tension between the liberal internationalism of the third way and traditional concerns for the national interest, as well as the contradictions inherent in a commitment to both political and economic liberalism.

    这篇文章探讨了新工党如何试图在撒哈拉以南非洲实施其关于“第三条道路”外交政策的想法。通过对英国外交政策实践的审查,我们探讨新工党是否成功地在非洲传统社会主义和资本主义观念之间找到了一种“第三条道路”。特别是,文章关注新工党在非洲大陆上建立和平、繁荣和民主的努力。我们得出结论,尽管新工党声称在外交政策中增加了“道德维度”成功地使英国在国际舞台上更加引人注目,但这种政策的实施本质上是困难的。这些困难反过来源于新工党政策所体现的矛盾,更具体地说,源于第三条道路的自由国际主义与对国家利益的传统关注之间的紧张关系,以及对政治和经济自由主义的承诺中固有的矛盾。
  • Disparate effects of non-steroidal anti-inflammatory drugs on apoptosis in guinea-pig gastric mucous cells: inhibition of basal apoptosis by diclofenac
    作者:Miranda Ashton、Peter J Hanson
    DOI:10.1038/sj.bjp.0704497
    日期:2002.1
    Non‐steroidal anti‐inflammatory drugs (NSAIDs) induce apoptosis in gastrointestinal cancer cell lines. Similar actions on normal gastric epithelial cells could contribute to NSAID gastropathy. The present work therefore compared the actions of diclofenac, ibuprofen, indomethacin, and the cyclo‐oxygenase‐2 selective inhibitor, NS‐398, on a primary culture of guinea‐pig gastric mucous epithelial cells. Cell number was assessed by staining with crystal violet. Apoptotic activity was determined by condensation and fragmentation of nuclei and by assay of caspase‐3‐like activity. Necrosis was evaluated from release of cellular enzymes. Ibuprofen (250 μM for 24 h) promoted cell loss, and apoptosis, under both basal conditions and when apoptosis was increased by 25 μM N‐Hexanoyl‐D‐sphingosine (C6‐ceramide). Diclofenac (250 μM for 24 h) reduced the proportion of apoptotic nuclei from 5.2 to 2.1%, and caused inhibition of caspase‐3‐like activity, without causing necrosis under basal conditions. No such reduction in apoptotic activity was evident in the presence of 25 μM C6‐ceramide. The inhibitory effect of diclofenac on basal caspase‐3‐like activity was also exhibited by the structurally similar mefenamic and flufenamic acids (1–250 μM), but not by niflumic acid. Inhibition of superoxide production by the cells increased caspase‐3‐like activity, but the inhibitory action of diclofenac on caspase activity remained. Diclofenac did not affect superoxide production. Diclofenac inhibited caspase‐3‐like activity in cell homogenates and also inhibited human recombinant caspase‐3. In conclusion, NSAIDs vary in their effect on apoptotic activity in a primary culture of guinea‐pig gastric mucous epithelial cells, and the inhibitory effect of diclofenac on basal apoptosis could involve an action on caspase activity. British Journal of Pharmacology (2002) 135, 407–416; doi:10.1038/sj.bjp.0704497
    非甾体抗炎药(NSAIDs)可诱导胃肠癌细胞系凋亡。类似的作用对正常胃上皮细胞可能导致NSAIDs导致的胃病。因此本研究比较了双氯芬酸、布洛芬、吲哚美辛以及环氧化酶-2选择性抑制剂NS-398对实验用豚鼠胃黏膜上皮细胞培养物的作用。 通过结晶紫染色评估细胞数量。通过细胞核凝缩、破碎和caspase-3样活性测定评估凋亡活性。通过细胞酶释放评估坏死。 布洛芬(250 μM,24小时)在基底条件和C6-神经酰胺(25 μM)增加凋亡条件下均促进细胞丢失及凋亡。 双氯芬酸(250 μM,24小时)将凋亡细胞核比例从5.2%降低至2.1%,抑制caspase-3样活性,且在基底条件下不引起坏死。但在C6-神经酰胺存在下,没有观察到凋亡活性的显著下降。 双氯芬酸对基底caspase-3样活性的抑制作用也被结构相似的甲氯芬酸和氟芬酸(1-250 μM)表现出,但尼美舒利酸没有表现出这种抑制。 抑制细胞中超氧物的产生会增加caspase-3样活性,但双氯芬酸对caspase活性的抑制作用仍然存在。双氯芬酸不影响超氧物的产生。 双氯芬酸抑制细胞匀浆中的caspase-3样活性,并且抑制人重组caspase-3。 结论:NSAIDs对豚鼠胃黏膜上皮细胞原代培养物凋亡活性的影响不同,双氯芬酸对基底凋亡的抑制作用可能涉及对caspase活性的作用。 British Journal of Pharmacology (2002) 135, 407–416; doi:10.1038/sj.bjp.0704497
  • Novel synthetic route to perfluoroallyl cyanide (PFACN) reacting perfluoroallyl fluorosulfonate with cyanide
    作者:Sergey N. Tverdomed、Markus E. Hirschberg、Romana Pajkert、Klaus Hintzer、Gerd-Volker Röschenthaler
    DOI:10.1016/j.jfluchem.2018.03.003
    日期:2018.6
    perfluoroallyl cyanide CF2CFCF2CN (PFACN) is presented. This includes the addition – elimination reaction of cyanide anion with perfluoroallyl fluorosulfate CF2CFCF2OSO2F (PFAFS). The reaction conditions, factors affecting the reactivity and regioselectivity of the process, the choice of reagent as well as the course of competitive reactions are discussed, too.
    提出了一种新的合成方法,用于制备全氟烯丙基氰化物CF 2 CFCF 2 CN(PFACN)。这包括氰化物阴离子与全氟烯丙基氟硫酸盐CF 2 CFCF 2 OSO 2 F(PFAFS)的加成-消除反应。还讨论了反应条件,影响该方法的反应性和区域选择性的因素,试剂的选择以及竞争性反应的过程。
  • Catalytic Promiscuity of Ancestral Esterases and Hydroxynitrile Lyases
    作者:Titu Devamani、Alissa M. Rauwerdink、Mark Lunzer、Bryan J. Jones、Joanna L. Mooney、Maxilmilien Alaric O. Tan、Zhi-Jun Zhang、Jian-He Xu、Antony M. Dean、Romas J. Kazlauskas
    DOI:10.1021/jacs.5b12209
    日期:2016.1.27
    esterase substrates and six lyase substrates found higher catalytic promiscuity among the ancestral enzymes (P < 0.01). Ancestral esterases were more likely to catalyze a lyase reaction than modern esterases, and the ancestral HNL was more likely to catalyze ester hydrolysis than modern HNL's. One ancestral enzyme (HNL1) along the path from esterase to hydroxynitrile lyases was especially promiscuous
    催化混杂是一种有用但偶然的酶特性,因此在自然界中寻找催化混杂酶的效率很低。一些祖先的酶是新酶进化的分支点,并且被假设是混杂的。为了检验祖先酶比其现代后代更混杂的假设,我们在约 1 亿年前的酯酶分歧的羟基腈裂合酶 (HNL) 的四个分支点重建了祖先酶。两种酶类型都是α/β-水解酶折叠酶,具有相同的催化三联体,但反应类型和机制不同。酯酶通过酰基酶中间体催化水解,而裂合酶则在没有中间体的情况下催化消除。用六种酯酶底物和六种裂合酶底物筛选祖先酶及其现代后代,发现祖先酶之间具有更高的催化混杂性(P < 0.01)。祖先的酯酶比现代的酯酶更有可能催化裂合酶反应,并且祖先的HNL比现代的HNL更有可能催化酯水解。从酯酶到羟基腈裂合酶的路径中的一种祖先酶(HNL1)特别混杂,并且催化许多底物的水解和裂合酶反应。更广泛的筛选测试了未通过进化选择的机械相关反应:脱羧、迈克尔加成、γ-内酰胺水解和 1,5-二酮
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台

同类化合物

(N-(2-甲基丙-2-烯-1-基)乙烷-1,2-二胺) (4-(苄氧基)-2-(哌啶-1-基)吡啶咪丁-5-基)硼酸 (11-巯基十一烷基)-,,-三甲基溴化铵 鼠立死 鹿花菌素 鲸蜡醇硫酸酯DEA盐 鲸蜡硬脂基二甲基氯化铵 鲸蜡基胺氢氟酸盐 鲸蜡基二甲胺盐酸盐 高苯丙氨醇 高箱鲀毒素 高氯酸5-(二甲氨基)-1-({(E)-[4-(二甲氨基)苯基]甲亚基}氨基)-2-甲基吡啶正离子 高氯酸2-氯-1-({(E)-[4-(二甲氨基)苯基]甲亚基}氨基)-6-甲基吡啶正离子 高氯酸2-(丙烯酰基氧基)-N,N,N-三甲基乙铵 马诺地尔 马来酸氢十八烷酯 马来酸噻吗洛尔EP杂质C 马来酸噻吗洛尔 马来酸倍他司汀 顺式环己烷-1,3-二胺盐酸盐 顺式氯化锆二乙腈 顺式吡咯烷-3,4-二醇盐酸盐 顺式双(3-甲氧基丙腈)二氯铂(II) 顺式3,4-二氟吡咯烷盐酸盐 顺式1-甲基环丙烷1,2-二腈 顺式-二氯-反式-二乙酸-氨-环己胺合铂 顺式-二抗坏血酸(外消旋-1,2-二氨基环己烷)铂(II)水合物 顺式-N,2-二甲基环己胺 顺式-4-甲氧基-环己胺盐酸盐 顺式-4-环己烯-1.2-二胺 顺式-4-氨基-2,2,2-三氟乙酸环己酯 顺式-2-甲基环己胺 顺式-2-(苯基氨基)环己醇 顺式-2-(氨基甲基)-1-苯基环丙烷羧酸盐酸盐 顺式-1,3-二氨基环戊烷 顺式-1,2-环戊烷二胺 顺式-1,2-环丁腈 顺式-1,2-双氨甲基环己烷 顺式--N,N'-二甲基-1,2-环己二胺 顺式-(R,S)-1,2-二氨基环己烷铂硫酸盐 顺式-(2-氨基-环戊基)-甲醇 顺-2-戊烯腈 顺-1,3-环己烷二胺 顺-1,3-双(氨甲基)环己烷 顺,顺-丙二腈 非那唑啉 靛酚钠盐 靛酚 霜霉威盐酸盐 霜脲氰