Two novel oligosaccharides, tetra-and penta-saccharides were synthesized by fructosyl transfer from 1-kestose to 4G-β-D-galactopyranosylsucrose with a purified 1F-fructosyltransferase of asparagus roots and identified as 1F-β-D-fructofuranosyl-4G-β-D-galactopyranosylsucrose, O-β-D-fructofuranosyl-(2→1)-β-D-fructofurano-syl-O-[β-D-galactopyranosyl-(1→4)]-α-D-glucopyranoside and 1F(1-β-D-fructofuranosyl)2-4G-β-D-galactopyranosylsucrose, [O-β-D-fructofuranosyl-(2→1)]2-β-D-fructofuranosyl-O-[β-D-galactopyranosyl-(1→4)]-α-D-glucopyranoside, respectively. Both oligosaccharides were scarcely hydrolyzed by carbohydrase from rat small intestine.Human intestinal bacterial growth by 1F-β-D-fructofuranosyl-4G-β-D-galactopyranosylsucrose was compared with that by the tetrasaccharides, stachyose and nystose. Bifidobacteria utilized 1F-β-D-fructofuranosyl-4G-β-D-galactopyranosylsucrose to the same extent as stachyose or nystose. On the other hand, the unfavorable bacteria, Clostridium perfringens, Escherichia coli and Enterococcus faecalis, that produce mutagenic substances did not use the synthetic oligosaccharide.
两种新型低聚糖——四糖和五糖是通过从1-kestose到4G-β-D-galactopyranosylsucrose的
果糖基转移,用芦笋根中纯化的1F-
果糖基转移酶合成的,并分别命名为1F-β-D-fructofuranosyl-4G-β-D-galactopyranosylsucrose、O-β-D-fructofuranosyl-(2→1)-β-D-fructofurano-syl-O-[β-D-galactopyranosyl-(1→4)]-α-D-glucopyranoside和1F(1-β-D-fructofuranosyl)2-4G-β-D-galactopyranosylsucrose、[O-β-D-fructofuranosyl-(2→1)]2-β-D-fructofuranosyl-O-[β-D-galactopyranosyl-(1→4)]-α-D-glucopyranoside。这两种低聚糖几乎不会被大鼠小肠中的
碳水化合物酶
水解。将1F-β-D-fructofuranosyl-4G-β-D-galactopyranosylsucrose与四