摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

商陆皂甙乙;商陆皂苷乙;美商陆皂苷B | 60820-94-2

中文名称
商陆皂甙乙;商陆皂苷乙;美商陆皂苷B
中文别名
美商陆皂苷B;商陆皂甙B;商陆皂苷B;美商陆皂苷 B
英文名称
(2S,4aR,6aR,6aS,6bR,8aR,9R,10R,11S,12aR,14bS)-11-hydroxy-9-(hydroxymethyl)-2 methoxycarbonyl-2,6a,6b,9,12a-pentamethyl-10-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid
英文别名
phytolaccagenin-3-O-β-D-xylopyranoside;3-O-β-D-xylopyranosyl-phytolaccagenin;3-O-β-D-xylopyranosylphytolaccagenin;phytolaccoside B;esculentoside B;3-O-β-D-xylopyranosyphytolaccagenin;(2S,4aR,6aR,6aS,6bR,8aR,9R,10R,11S,12aR,14bS)-11-hydroxy-9-(hydroxymethyl)-2-methoxycarbonyl-2,6a,6b,9,12a-pentamethyl-10-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid
商陆皂甙乙;商陆皂苷乙;美商陆皂苷B化学式
CAS
60820-94-2
化学式
C36H56O11
mdl
——
分子量
664.834
InChiKey
SFZVDNKTWPZIJG-ACNZYQHGSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    779.3±60.0 °C(Predicted)
  • 密度:
    1.33
  • 溶解度:
    溶于氯仿、二氯甲烷、乙酸乙酯、DMSO、丙酮等。

计算性质

  • 辛醇/水分配系数(LogP):
    2.4
  • 重原子数:
    47
  • 可旋转键数:
    6
  • 环数:
    6.0
  • sp3杂化的碳原子比例:
    0.89
  • 拓扑面积:
    183
  • 氢给体数:
    6
  • 氢受体数:
    11

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    商陆皂苷甲 在 β-d-glucosidase from snailase 、 calcium chloride 作用下, 以 aq. buffer 为溶剂, 反应 0.17h, 生成 商陆皂甙乙;商陆皂苷乙;美商陆皂苷B
    参考文献:
    名称:
    Efficient enzymatic preparation of esculentoside B following condition optimization by response surface methodology
    摘要:
    Esculentoside B (EsB, also named phytolaccagenin 3-O-beta-D-xylopyranoside), a pentacyclic triterpene isolated from herbal medicine Radix phytolaccae, has been found to possess multiple pharmacological activities. Nonetheless, the low content in nature and the difficulties in the total synthesis of EsB strongly limit its extensive investigations and further development as a drug candidate. This study aims to provide a practical method for highly efficient preparation of EsB using esculentoside A (EsA, phytolaccagenin 3-beta-D-glucopyranosyl (1 -> 4)-beta-D-xylopyranoside) as the starting material. beta-D-glucosidase from snailase was used to catalyze the formation of EsB, and the product was then purified and fully characterized by both HRMS and NMR. To prepare EsB in a more cost-effective way, response surface methodology (RSM) was used to explore the potential effects of the reaction conditions (such as reaction temperature, pH, enzyme load, and reaction time) on the conversion rates of EsA. The highest EsB yield of 0.66 mg/ml was obtained experimentally under optimized conditions as follows: temperature 48.28 degrees C, pH 6.4, enzyme load 4.43%, and reaction time 2.73 h. This result agreed well with the predicted yield of 0.68 mg/ml by RSM. The enzymatic kinetics of this biotransformation was characterized at the optimum pH and temperature. The S-50 value was evaluated as 167.4 mu M, while the Vmax value was 345.6 nmol/min/mg. In summary, this study provided a mild and practical method for the highly efficient preparation of EsB from EsA, which held great promise for large scale production of EsB. (C) 2016 Elsevier B.V. All rights reserved.
    DOI:
    10.1016/j.molcatb.2016.04.013
点击查看最新优质反应信息

文献信息

  • New approaches to the structural modification of olean-type pentacylic triterpenes via microbial oxidation and glycosylation
    作者:Yu-Yao Zhu、Li-Wu Qian、Jian Zhang、Ji-Hua Liu、Bo-Yang Yu
    DOI:10.1016/j.tet.2011.04.055
    日期:2011.6
    Microbial transformation of 4 olean-type pentacyclic triterpenes (OPTs), 3-oxo oleanolic acid (1), 3-acetyl oleanolic acid (2), oleanolic acid (3), and esculentoside A (4) was studied. After the screening of 12 strains of microbes, preparative biotransformation by two strains of Streptomyces griseus ATCC 13273 and Aspergillus ochraceus CICC 40330 resulted in the isolation of 10 metabolites. The microbial catalyzed high efficient regio-selective methyl oxidation and glycosylation were discovered, which could be provided as an alternative method to expand the structural diversity of OPTs. All the structures of the metabolites were elucidated unambiguously by ESI-MS, H-1 NMR, C-13 NMR, and 2D-NMR spectroscopy. (C) 2011 Elsevier Ltd. All rights reserved.
  • Efficient enzymatic preparation of esculentoside B following condition optimization by response surface methodology
    作者:Pan Cui、Tong-Yi Dou、Yan-Ping Sun、Shi-Yang Li、Lei Feng、Li-Wei Zou、Ping Wang、Da-Cheng Hao、Guang-Bo Ge、Ling Yang
    DOI:10.1016/j.molcatb.2016.04.013
    日期:2016.8
    Esculentoside B (EsB, also named phytolaccagenin 3-O-beta-D-xylopyranoside), a pentacyclic triterpene isolated from herbal medicine Radix phytolaccae, has been found to possess multiple pharmacological activities. Nonetheless, the low content in nature and the difficulties in the total synthesis of EsB strongly limit its extensive investigations and further development as a drug candidate. This study aims to provide a practical method for highly efficient preparation of EsB using esculentoside A (EsA, phytolaccagenin 3-beta-D-glucopyranosyl (1 -> 4)-beta-D-xylopyranoside) as the starting material. beta-D-glucosidase from snailase was used to catalyze the formation of EsB, and the product was then purified and fully characterized by both HRMS and NMR. To prepare EsB in a more cost-effective way, response surface methodology (RSM) was used to explore the potential effects of the reaction conditions (such as reaction temperature, pH, enzyme load, and reaction time) on the conversion rates of EsA. The highest EsB yield of 0.66 mg/ml was obtained experimentally under optimized conditions as follows: temperature 48.28 degrees C, pH 6.4, enzyme load 4.43%, and reaction time 2.73 h. This result agreed well with the predicted yield of 0.68 mg/ml by RSM. The enzymatic kinetics of this biotransformation was characterized at the optimum pH and temperature. The S-50 value was evaluated as 167.4 mu M, while the Vmax value was 345.6 nmol/min/mg. In summary, this study provided a mild and practical method for the highly efficient preparation of EsB from EsA, which held great promise for large scale production of EsB. (C) 2016 Elsevier B.V. All rights reserved.
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定