摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

巴伦西亚橘烯 | 4630-07-3

中文名称
巴伦西亚橘烯
中文别名
瓦伦西亚桔烯;5-二甲基-3-异丙烯-1,2,3,4,4,5,6,7-八氢萘;(+)-瓦伦亚烯;朱栾倍半萜;[1R-(1α,7β,8Aα)]-1,2,3,5,6,7,8,8A-八氢-1,8A-二甲基-7-(1-甲基乙烯基)-萘;(3R,4aS,5R)-4a,5-二甲基-3-异丙烯基-1,2,3,4,4a,5,6,7-八氢萘
英文名称
valencene
英文别名
valencen;(1R,7R,8aS)-1,2,3,5,6,7,8,8a-octahydro-1,8a-dimethyl-7-(1-methylethenyl)naphthalene;(3R,4aS,5R)-4a,5-dimethyl-3-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene;(3R,4aS,5R)-4a,5-dimethyl-3-prop-1-en-2-yl-2,3,4,5,6,7-hexahydro-1H-naphthalene
巴伦西亚橘烯化学式
CAS
4630-07-3
化学式
C15H24
mdl
MFCD00075884
分子量
204.356
InChiKey
QEBNYNLSCGVZOH-NFAWXSAZSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    274 °C(lit.)
  • 密度:
    0.92 g/mL at 25 °C(lit.)
  • 闪点:
    >230 °F
  • 溶解度:
    可溶于氯仿(少许)、乙酸乙酯(少许)、甲醇(少许)
  • LogP:
    6.29
  • 物理描述:
    Colourless to pale yellow oily liquid
  • 折光率:
    1.498-1.508
  • 稳定性/保质期:
    <p><b></b></p>

计算性质

  • 辛醇/水分配系数(LogP):
    5.2
  • 重原子数:
    15
  • 可旋转键数:
    1
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.733
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

安全信息

  • 安全说明:
    S23,S24/25
  • WGK Germany:
    3
  • 包装等级:
    III
  • 危险类别:
    6.1
  • 危险性防范说明:
    P301+P310,P331,P405,P501
  • 危险品运输编号:
    2810
  • 危险性描述:
    H304
  • 储存条件:
    2-8°C

SDS

SDS:7499f18f6f07aa9468e5c6bbfb314653
查看

模块 1. 化学品
1.1 产品标识符
: 瓦伦亚烯
产品名称
1.2 鉴别的其他方法
(+)-Valencene
1.3 有关的确定了的物质或混合物的用途和建议不适合的用途
仅用于研发。不作为药品、家庭或其它用途。

模块 2. 危险性概述
2.1 GHS-分类
根据全球协调系统(GHS)的规定,不是危险物质或混合物。
2.3 其它危害物 - 无

模块 3. 成分/组成信息
3.1 物 质
: (+)-Valencene
别名
: C15H24
分子式
: 204.35 g/mol
分子量


模块 4. 急救措施
4.1 必要的急救措施描述
吸入
如果吸入,请将患者移到新鲜空气处。 如呼吸停止,进行人工呼吸。
皮肤接触
用肥皂和大量的水冲洗。
眼睛接触
用水冲洗眼睛作为预防措施。
食入
切勿给失去知觉者通过口喂任何东西。 用水漱口。
4.2 主要症状和影响,急性和迟发效应
据我们所知,此化学,物理和毒性性质尚未经完整的研究。
4.3 及时的医疗处理和所需的特殊处理的说明和指示
无数据资料

模块 5. 消防措施
5.1 灭火介质
灭火方法及灭火剂
用水雾,抗乙醇泡沫,干粉或二氧化碳灭火。
5.2 源于此物质或混合物的特别的危害
碳氧化物
5.3 给消防员的建议
如必要的话,戴自给式呼吸器去救火。
5.4 进一步信息
无数据资料

模块 6. 泄露应急处理
6.1 作业人员防护措施、防护装备和应急处置程序
避免吸入蒸气、烟雾或气体。
6.2 环境保护措施
不要让产品进入下水道。
6.3 泄漏化学品的收容、清除方法及所使用的处置材料
放入合适的封闭的容器中待处理。
6.4 参考其他部分
丢弃处理请参阅第13节。

模块 7. 操作处置与储存
7.1 安全操作的注意事项
无数据资料
7.2 安全储存的条件,包括任何不兼容性
贮存在阴凉处。 使容器保持密闭,储存在干燥通风处。
打开了的容器必须仔细重新封口并保持竖放位置以防止泄漏。
7.3 特定用途
无数据资料

模块 8. 接触控制和个体防护
8.1 容许浓度
最高容许浓度
没有已知的国家规定的暴露极限。
8.2 暴露控制
适当的技术控制
常规的工业卫生操作。
个体防护设备
眼/面保护
请使用经官方标准如NIOSH (美国) 或 EN 166(欧盟) 检测与批准的设备防护眼部。
皮肤保护
戴手套取 手套在使用前必须受检查。
请使用合适的方法脱除手套(不要接触手套外部表面),避免任何皮肤部位接触此产品.
使用后请将被污染过的手套根据相关法律法规和有效的实验室规章程序谨慎处理. 请清洗并吹干双手
所选择的保护手套必须符合EU的89/686/EEC规定和从它衍生出来的EN 376标准。
身体保护
防渗透的衣服, 防护设备的类型必须根据特定工作场所中的危险物的浓度和数量来选择。
呼吸系统防护
不需要对呼吸系统保护.对少量挥发请采用美国OV/AG (US)标准类型的 或欧洲ABEK (EU EN
14387)标准类型的呼吸器过滤器.
呼吸器使用经过测试并通过政府标准如NIOSH(US)或CEN(EU)的呼吸器和零件。

模块 9. 理化特性
9.1 基本的理化特性的信息
a) 外观与性状
形状: 透明, 液体
颜色: 淡黄
b) 气味
无数据资料
c) 气味阈值
无数据资料
d) pH值
无数据资料
e) 熔点/凝固点
无数据资料
f) 沸点、初沸点和沸程
274 °C - lit.
g) 闪点
100 °C - 闭杯
h) 蒸发速率
无数据资料
i) 易燃性(固体,气体)
无数据资料
j) 高的/低的燃烧性或爆炸性限度 无数据资料
k) 蒸气压
无数据资料
l) 蒸汽密度
无数据资料
m) 密度/相对密度
0.92 g/cm3 在 25 °C
n) 水溶性
无数据资料
o) n-辛醇/水分配系数
无数据资料
p) 自燃温度
无数据资料
q) 分解温度
无数据资料
r) 粘度
无数据资料

模块 10. 稳定性和反应活性
10.1 反应性
无数据资料
10.2 稳定性
无数据资料
10.3 危险反应
无数据资料
10.4 应避免的条件
无数据资料
10.5 不相容的物质
强氧化剂
10.6 危险的分解产物
其它分解产物 - 无数据资料

模块 11. 毒理学资料
11.1 毒理学影响的信息
急性毒性
无数据资料
皮肤刺激或腐蚀
无数据资料
眼睛刺激或腐蚀
无数据资料
呼吸道或皮肤过敏
无数据资料
生殖细胞致突变性
无数据资料
致癌性
IARC:
此产品中没有大于或等于 0。1%含量的组分被 IARC鉴别为可能的或肯定的人类致癌物。
生殖毒性
无数据资料
特异性靶器官系统毒性(一次接触)
无数据资料
特异性靶器官系统毒性(反复接触)
无数据资料
吸入危险
无数据资料
潜在的健康影响
吸入 吸入可能有害。 可能引起呼吸道刺激。
摄入 如服入是有害的。
皮肤 通过皮肤吸收可能有害。 可能引起皮肤刺激。
眼睛 可能引起眼睛刺激。
接触后的征兆和症状
据我们所知,此化学,物理和毒性性质尚未经完整的研究。
附加说明
化学物质毒性作用登记: 无数据资料

模块 12. 生态学资料
12.1 生态毒性
无数据资料
12.2 持久性和降解性
无数据资料
12.3 潜在的生物累积性
无数据资料
12.4 土壤中的迁移性
无数据资料
12.5 PBT 和 vPvB的结果评价
无数据资料
12.6 其它不良影响
无数据资料

模块 13. 废弃处置
13.1 废物处理方法
产品
将剩余的和不可回收的溶液交给有许可证的公司处理。
受污染的容器和包装
按未用产品处置。

模块 14. 运输信息
14.1 联合国危险货物编号
欧洲陆运危规: - 国际海运危规: - 国际空运危规: -
14.2 联合国运输名称
欧洲陆运危规: 非危险货物
国际海运危规: 非危险货物
国际空运危规: 非危险货物
14.3 运输危险类别
欧洲陆运危规: - 国际海运危规: - 国际空运危规: -
14.4 包裹组
欧洲陆运危规: - 国际海运危规: - 国际空运危规: -
14.5 环境危险
欧洲陆运危规: 否 国际海运危规 国际空运危规: 否
海洋污染物(是/否): 否
14.6 对使用者的特别提醒
无数据资料


模块 15 - 法规信息
N/A


模块16 - 其他信息
N/A

制备方法与用途

概述

巴伦西亚橘烯属于萜烯化合物,是一大类结构差异很大的天然分子。在植物界中,单萜和倍半萜烯是最具多样性的两类分子。它们通常在植物抵抗病虫害及草食动物以及吸引授粉昆虫方面发挥作用。

制备

一种通过重组解脂耶氏酵母菌构建方法来生产巴伦西亚橘烯和诺卡酮:首先,通过同源重组的方法,在解脂耶氏酵母的rDNA位点导入了巴伦西亚橘烯合酶编码基因CVS表达盒、诺卡酮合酶编码基因CYP706M1表达盒及细胞色素P450还原酶编码基因AtCPR表达盒,最终得到能够生产巴伦西亚橘烯和诺卡酮的重组解脂耶氏酵母菌。实验结果证明,通过该方法获得的重组解脂耶氏酵母菌可以使巴伦西亚橘烯和诺卡酮的产量提高到最少6.5 mg/L(诺卡酮30 μg/L)至最多18 mg/L(诺卡酮0.5 mg/L)。此方法为人工合成巴伦西亚橘烯和诺卡酮提供了依据。

毒性

GRAS (FEMA)。

使用限量
  • FEMA:饮料、含醇饮料、冷饮、糖果、焙烤食品、胶冻、布丁、胶姆糖、牛奶、乳制品、谷类制品,均0.9 mg/kg。
食品添加剂最大允许使用量和残留标准

巴伦西亚橘烯作为一种食品用香料,其最大允许使用量和最大允许残留量应遵循GB 2760中的规定。具体为:用于配制香精时,各香料成分不得超过在GB 2760中的最大允许使用量和最大允许残留量。

化学性质

巴伦西亚橘烯是一种无色液体,具有柑橘类香气,沸点123℃(1466Pa),折射率(nD20) 1.5057,相对密度(d420) 0.920,闪点100℃。天然品主要存在于柑橘类水果和可可等植物中。

用途

GB 2760—1996规定巴伦西亚橘烯为暂时允许使用的食品用香料。

生产方法

巴伦西亚橘烯由圆柚酮还原反应而得。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    描述:
    巴伦西亚橘烯 反应 4.0h, 以6.98%的产率得到芘
    参考文献:
    名称:
    从倍半萜烯热解形成多环芳烃
    摘要:
    考察了四种倍半萜烯,β-石竹烯,α-雪松烯,longifolene和valencene的热解产物。热解在300、400和500°C下进行,产物通过GC-MS测定,然后使用多变量数据分析检查其异同。分析表明,longifolene对热解的抵抗力最高,而对石竹烯和瓦伦烯的抵抗力最弱,中间位置为雪松烯和瓦伦烯。尽管化合物在300°C时基本保持不变,但多环芳烃(PAH)是400和500°C时热解产物的主要成分。在较高温度下,热解物中存在不少于16种EPA优先污染物的9种。
    DOI:
    10.1016/j.foodchem.2012.06.033
  • 作为产物:
    描述:
    farnesyl pyrophosphate 在 valencene synthase from Citrus sinensis 作用下, 以 aq. buffer 为溶剂, 反应 12.0h, 生成 巴伦西亚橘烯
    参考文献:
    名称:
    基于机理的萜烯合酶翻译后修饰和失活
    摘要:
    萜烯是无所不在的天然化学物质,具有跨越生命所有三个领域的多种生物学功能。在专门的代谢中,萜烯合酶(TPSs)的活性位点在形状和反应性方面不断发展,以指导多种化学型的生物合成,以实现机体适应性。由于大多数萜烯的生物合成机制涉及高反应性的碳阳离子中间体,因此催化这些级联反应的蛋白质表面具有反应区域,可能易于过早地捕获碳阳离子并可能使酶失活。在这里,我们使用蛋白质组学和X射线晶体学分析表明,阳离子中间体通过保守的活性位点残基捕获,从而导致抑制性自我烷基化。而且,阳离子介导的失活水平随着活性位点的突变而增加,会改变类异戊二烯二磷酸酯底物的大小和结构,同时会增加反应温度。与具有相对较高的产物特异性的TPS相比,单独合成多种产物的TPS较不容易自烷基化。总体而言,提出的结果表明,基于机理的烷基化代表了阳离子衍生的萜烯生物合成过程中被忽略的机械压力。
    DOI:
    10.1021/acschembio.5b00539
  • 作为试剂:
    描述:
    葡萄糖氧气十二烷葡萄糖巴伦西亚橘烯 作用下, 反应 176.0h, 生成 十二烷
    参考文献:
    名称:
    TWO-PHASE FERMENTATION PROCESS FOR THE PRODUCTION OF AN ORGANIC COMPOUND
    摘要:
    本发明涉及一种用于生产有机化合物的两相发酵过程,特别是一种异戊二烯类化合物的生产方法,以及一种包括两相发酵系统的生物反应器,用于生产有机化合物。
    公开号:
    US20160168595A1
点击查看最新优质反应信息

文献信息

  • Catalytic Metal-free Allylic C–H Amination of Terpenoids
    作者:Wei Pin Teh、Derek C. Obenschain、Blaise M. Black、Forrest E. Michael
    DOI:10.1021/jacs.0c06997
    日期:2020.9.30
    selective replacement of C-H bonds in complex molecules, especially natural products like terpenoids, is a highly efficient way to introduce new functionality and/or couple fragments. Here, we report the development of a new metal-free allylic amination of alkenes that allows the introduction of a wide range of nitrogen functionality at the allylic position of alkenes with unique regioselectivity and no
    选择性替换复杂分子中的 CH 键,尤其是萜类化合物等天然产物,是引入新功能和/或偶联片段的高效方法。在这里,我们报告了一种新的烯烃无金属烯丙基胺化的开发,它允许在烯烃的烯丙基位置引入广泛的氮官能团,具有独特的区域选择性和无烯丙基转座。该反应使用催化量的硒化膦或硒脲形式的硒。简单的磺酰胺和氨基磺酸盐可直接用于反应,无需制备分离的类氮烯前体。我们通过以高产率和区域选择性胺化大量萜类化合物来证明这种转化的效用。
  • Iron-Catalyzed Hydroboration: Unlocking Reactivity through Ligand Modulation
    作者:Maialen Espinal-Viguri、Callum R. Woof、Ruth L. Webster
    DOI:10.1002/chem.201602818
    日期:2016.8.8
    hydroboration (HB) of alkenes and alkynes is reported. A simple change in ligand structure leads to an extensive change in catalyst activity. Reactions proceed efficiently over a wide range of challenging substrates including activated, unactivated and sterically encumbered motifs. Conditions are mild and do not require the use of reducing agents or other additives. Large excesses of borating reagent are not required
    据报道,烯烃和炔烃的铁催化硼氢化(HB)。配体结构的简单变化导致催化剂活性的广泛变化。反应可在各种挑战性底物上有效进行,包括激活,未激活和空间受限的基序。条件温和,不需要使用还原剂或其他添加剂。不需要大量过量的硼酸化试剂,从而可以在存在多个双键的情况下控制化学和区域选择性。机械学的见解表明,该反应很可能通过高反应性的氢化铁中间体进行。
  • Dehydroxymethylation of Alcohols Enabled by Cerium Photocatalysis
    作者:Kaining Zhang、Liang Chang、Qing An、Xin Wang、Zhiwei Zuo
    DOI:10.1021/jacs.9b05932
    日期:2019.7.3
    functionality has been reliably transferred into nucleophilic radicals with the loss of one molecule of formaldehyde. Intriguingly, we found that the dehydroxymethylation process can be significantly promoted by the cerium catalyst, and the stabilization effect of the fragmented radicals also plays a significant role. This operationally simple protocol has enabled the direct utilization of primary alcohols as unconventional
    脱羟甲基化是将醇原料直接转化为少一个碳原子的烷基合成子,是一种利用醇材料的普遍性和稳健性的非常规且未充分探索的策略。在温和且氧化还原中性的反应条件下,利用廉价的铈催化剂,提供了光催化脱羟甲基化平台。通过配体到金属的电荷转移催化,醇官能团已可靠地转移到亲核自由基中,同时失去一分子甲醛。有趣的是,我们发现铈催化剂可以显着促进脱羟甲基化过程,并且碎片自由基的稳定作用也起着重要作用。这种操作简单的方案能够直接利用伯醇作为非常规烷基亲核试剂,用于自由基介导的 1,4-共轭加成与迈克尔受体。广泛的醇类,从简单的乙醇到复杂的核苷和类固醇,已成功应用于这种片段偶联转化。此外,该催化系统的模块化已在多种自由基介导的转化中得到证实,包括氢化、胺化、烯基化和氧化。
  • Scalable and sustainable electrochemical allylic C–H oxidation
    作者:Evan J. Horn、Brandon R. Rosen、Yong Chen、Jiaze Tang、Ke Chen、Martin D. Eastgate、Phil S. Baran
    DOI:10.1038/nature17431
    日期:2016.5.5
    transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications
    C-H 键直接功能化的新方法和策略开始重塑逆合成分析领域,影响天然产物、药物和材料的合成。由于烯酮和烯丙醇作为多功能中间体的实用性,以及它们在天然和非天然材料中的普遍性,烯丙基系统的氧化在这方面发挥了重要作用,可能是应用最广泛的 C-H 官能化。烯丙基氧化在数百种合成中具有特色,包括一些被视为“经典”的天然产物合成。尽管多次尝试提高这种转换的效率和实用性,大多数条件仍然使用剧毒试剂(基于有毒元素,如铬或硒)或昂贵的催化剂(如钯或铑)。这些要求在工业环境中是有问题的;目前,不存在可扩展和可持续的烯丙基氧化解决方案。因此,这种氧化策略很少用于大规模合成应用,限制了工业科学家采用这种逆合成策略。在这里,我们描述了一种电化学 C-H 氧化策略,它具有广泛的底物范围、操作简单性和高化学选择性。它使用廉价且容易获得的材料,并代表可扩展的烯丙基 C-H 氧化(以 100 克为单位证明),
  • MnO<sub>2</sub>/TBHP: A Versatile and User-­Friend­ly Combination of Reagents for the Oxidation of Allylic and Benzylic Methylene Functional Groups
    作者:Stefano Serra
    DOI:10.1002/ejoc.201500829
    日期:2015.9
    activated MnO2, tert-butyl hydroperoxide (TBHP) in CH2Cl2 is able to oxidize the allylic and benzylic methylene groups of different classes of compounds. I describe a one-pot oxidation protocol based on two sequential steps. In the first step, carried out at low temperature, MnO2 catalyses the oxidation of the methylene group. This is followed by a second step where reaction temperature is increased
    在活化的 MnO2 存在下,CH2Cl2 中的叔丁基过氧化氢 (TBHP) 能够氧化不同类别化合物的烯丙基和苄基亚甲基。我描述了基于两个连续步骤的一锅氧化方案。在低温下进行的第一步中,MnO2 催化亚甲基的氧化。这之后是第二步,其中反应温度升高,使 MnO2 既可以催化未反应的 TBHP 分解,又可以氧化可能形成的烯丙醇。所提出的氧化程序通常适用,尽管其效率、区域选择性和化学选择性在很大程度上取决于底物的结构。
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定

相关功能分类