摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

异辛烷 | 540-84-1

中文名称
异辛烷
中文别名
2,2,4-三甲基戊烷;2,2,4-三甲基-1-氧杂-4-氮杂-2-硅杂环己烷;三甲基戊烷;2-甲基庚烷;2,2,4-三甲基戊烷(异辛烷)
英文名称
2,2,4-trimethylpentane
英文别名
2,2,4-trimethypentane;iso-octane
异辛烷化学式
CAS
540-84-1
化学式
C8H18
mdl
——
分子量
114.231
InChiKey
NHTMVDHEPJAVLT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    -107 °C
  • 沸点:
    98-99 °C(lit.)
  • 密度:
    0.692 g/mL at 25 °C(lit.)
  • 蒸气密度:
    3.9 (vs air)
  • 闪点:
    18 °F
  • 溶解度:
    水:不溶
  • 最大波长(λmax):
    λ: 205 nm Amax: 1.00λ: 225 nm Amax: 0.10λ: 254 nm Amax: 0.01
  • 介电常数:
    2.1(Ambient)
  • 暴露限值:
    ACGIH TLV: TWA for all isomers 300 ppm (adopted).
  • LogP:
    4.373 (est)
  • 物理描述:
    Isooctane appears as a clear colorless liquid with a petroleum-like odor. Less dense than water and insoluble in water. Vapors are heavier than air.
  • 颜色/状态:
    MOBILE LIQUID
  • 气味:
    ODOR OF GASOLINE
  • 蒸汽密度:
    3.93 (AIR= 1)
  • 蒸汽压力:
    40.6 MM HG @ 21 °C
  • 大气OH速率常数:
    3.68e-12 cm3/molecule*sec
  • 自燃温度:
    784 °F (418 °C)
  • 粘度:
    LESS THAN 32 SAYBOLT UNIVERSAL SECONDS
  • 折光率:
    INDEX OF REFRACTION: 1.39157 @ 20 °C/D
  • 保留指数:
    687.5;683.91;688;684.8;691;687;686;688;686;689.1;689.9;690.2;690.6;691.1;692.7;694;693;700;688.44;697.7;703.1;689;691;689;691;694;695;688;689;690;691;692;694;691.3;691.4;686;689;690;690;693;695;689;689;694;690;691;691.5;687.1;692;691;689;688;685.3;691;684.38;689;684.1;688;692;685;685;689;692;689;690;686;690;700;700
  • 稳定性/保质期:
    1. 与95%的硫酸不反应。在硝酸和硫酸混酸中,于140℃发生硝化反应。由于分子中含有叔碳上的氢原子,因此比辛烷更容易被氧化。它可以与卤素进行光化学反应,并且可以与烯烃发生烷基化反应,在AlCl3-HCl催化下与苯反应生成1,4-二叔丁基苯。 2. 稳定性 [18]:稳定 3. 避免与强氧化剂、强酸、强碱和卤素接触 4. 不会发生聚合反应 [20]

计算性质

  • 辛醇/水分配系数(LogP):
    3.8
  • 重原子数:
    8
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

代谢
2,2,4-三甲基戊烷的代谢可能通过ω和ω-1氧化产生相应的醇和酸代谢物。尽管这些代谢物的确切结构尚待阐明,但有证据表明肝脏和肾脏中的细胞色素p450系统、月桂酸羟化酶和软脂酰辅酶A氧化酶在2,2,4-三甲基戊烷的生物转化中发挥作用。研究表明,2,2,4-三甲基戊烷(用(14)C放射性同位素标记)通过细胞色素p450系统代谢,并且调节这个酶系统(使用苯巴比妥和美替拉酮)会改变2,2,4-三甲基戊烷的分布和肾脏的保留。用苯巴比妥预处理雄性大鼠,呼出的有机物量(从剂量的40%降至10%)减少,尿液中放射性增加(从46%增至80%),但肾脏中放射性保留量没有改变。美替拉酮(细胞色素p450的抑制剂)增加了呼出的2,2,4-三甲基戊烷的消除半衰期(从2.8小时增至3.8小时),没有改变尿液中的放射性,肾脏中放射性保留量减少了37%。从这些研究中可以看出,2,2,4-三甲基戊烷(异辛烷)的消除主要是通过代谢为水溶性产物,这些产物通过尿液排出和呼出母体物质。
Metabolism of 2,2,4-trimethylpentane probably occurs by omega and omega-l oxidation to yield the corresponding alcohol and acid metabolites. While the exact structure of these remains to be elucidated, there is evidence that the cytochrome p450 system, lauric acid hydroxylases, and palmitoyl CoA oxidase in the liver and kidneys play a role in the biotransformation of 2,2,4-trimethylpentane. Studies indicate that 2,2,4-trimethylpentane (radiolabeled with (14)C) is metabolized by the cytochrome p450 system and that modulation of this enzyme system (with phenobarbital and metyrapone) will alter the disposition and renal retention of 2,2,4-trimethylpentane. Pretreatment of male rats with phenobarbital decreased the expired organics (from 40 to 10% of dose) and increased the urine radioactivity (from 46 to 80%), but did not alter the retention of radioactivity in the kidneys. Metyrapone (an inhibitor of cytochrome p450) increased the elimination half-life of expired 2,2,4-trimethylpentane (2.8 to 3.8 hr), did not alter urinary radioactivity, and decreased radioactivity retention in the kidney by 37%. From these studies, elimination of 2,2,4-trimethylpentane (isooctane) occurs mainly by metabolism to water-soluble products which are excreted in the urine and by exhalation of parent material.
来源:Hazardous Substances Data Bank (HSDB)
代谢
2,2,4-三甲基戊烷的代谢特性在雄性和雌性大鼠中进行了研究。大鼠通过口服单一剂量的(14)C 2,2,4-三甲基戊烷(4.4 mmol/kg; 2 uCi/mmol)进行处理。对2,2,4-三甲基戊烷的尿代谢物进行鉴定和定量显示,雄性和雌性大鼠通过相同的途径并以相似的速度代谢2,2,4-三甲基戊烷。然而,雌性大鼠在尿液中排出了比雄性大鼠更多的2,4,4-三甲基-2-戊醇的共轭物。2,4,4-三甲基-2-戊醇是雄性大鼠肾脏中的主要代谢物,但在雌性大鼠肾脏中未检测到。
Metabolic disposition of 2,2,4-trimethylpentane was studied in male and female rats. Rats were treated with a single oral dose of (14)C 2,2,4-trimethylpentane (4.4 mmol/kg; 2 uCi/mmol). Identification and quantitation of the urinary metabolites of 2,2,4-trimethylpentane showed that both male and female rats metabolize 2,2,4-tremethylpentane via the same pathway and at a similar rate. Female rats, however, excreted more conjugates of 2,4,4-trimethyl-2-pentanol in urine than males. 2,4,4-Trimethyl-2-pentanol was the major metabolite present in the male rat kidney, but was absent in the female rat kidney.
来源:Hazardous Substances Data Bank (HSDB)
代谢
当给予成年雄性Fischer-344大鼠(300 mg/kg, ig) (14)C 2,2,4-三甲基戊烷,在牺牲前22、16和10小时,给药放射活性的16%以2,2,4-三甲基戊烷代谢物的形式在尿液中排出。
When (14)C 2,2,4-trimethylpentane was administered to an adult male Fischer-344 rat (300 mg/kg, ig) 22, 16, and 10 hr before sacrifice, 16% of the administered radioactivity was eliminated in the urine as 2,2,4-trimethylpentane metabolites.
来源:Hazardous Substances Data Bank (HSDB)
代谢
挥发性烃主要通过肺部吸收,也可能在吞咽后通过吸吮进入体内。
Volatile hydrocarbons are absorbed mainly through the lungs, and may also enter the body after ingestion via aspiration. (A600)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
石油馏分是中枢神经系统抑制剂,会导致肺部损伤。
Petroleum distillates are central nervous system depressants and cause pulmonary damage. (A600)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌物分类
2,2,4-三甲基戊烷存在于汽油中,可能对人类有致癌性(2B组)。
2,2,4-Trimethylpentane is found in gasoline, which is possibly carcinogenic to humans (Group 2B). (L135)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 健康影响
石油馏分是有害的吸入物质,可能导致肺部损伤、中枢神经系统抑制以及心脏效果,如心律不齐。它们还可能影响血液、免疫系统、肝脏和肾脏。(A600,L1297)
Petroleum distillates are aspiration hazards and may cause pulmonary damage, central nervous system depression, and cardiac effects such as cardiac arrhythmias. They may also affect the blood, immune system, liver, and kidney. (A600, L1297)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 暴露途径
该物质可以通过吸入和摄入被身体吸收。
The substance can be absorbed into the body by inhalation and by ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
毒理性
  • 暴露途径
口服(L400);吸入(L400);皮肤给药(L400)
Oral (L400) ; inhalation (L400) ; dermal (L400)
来源:Toxin and Toxin Target Database (T3DB)
吸收、分配和排泄
呼吸是2,2,4-三甲基戊烷被吸收的最可能途径。尽管尚未确定,但2,2,4-三甲基戊烷的呼吸道摄取可能与正辛烷的相似。据报道,口服吸收(14)C-2,2,4-三甲基戊烷在雄性大鼠中发生的程度为86%,这是基于在尿液、呼出的有机物和呼出的(14)C-二氧化碳中回收放射性测定的。尚未报道经皮生物利用度,但基于已报告的正庚烷和正辛烷的经皮结果,预计通过皮肤吸收2,2,4-三甲基戊烷会是少量的。口服灌胃研究...在雄性大鼠中用(14)C-2,2,4-三甲基戊烷(0.5毫克/千克,单次剂量)进行实验,发现在给药后72小时,放射性物质在肾脏中有选择性地分布。有人提出,2,2,4-三甲基戊烷在肾脏中的保留与在雄性大鼠中特异性观察到的烃诱导的肾病变有关。
Respiration is the most likely route by which 2,2,4-trimethylpentane is absorbed. Although it has not been determined, the respiratory uptake of 2,2,4-trimethylpentane is probably similar to that seen for n-octane. Oral absorption of (14)C-2,2,4-trimethylpentane has been reported ... to occur to the extent of 86% in male rats based on recovery of radioactivity in urine, expired organics, and expired (14)C-carbon dioxide. Dermal bioavailability has not been reported, but absorption of 2,2,4-trimethylpentane through the skin would be expected to be minor based on percutaneous results reported for n-heptane and n-octane. Oral gavage studies ... in male rats with (14)C-2,2,4-trimethylpentane (0.5 mg/kg, single dose) revealed that the radioactivity is selectively distributed in the kidneys 72 hr after administration. It has been suggested that the renal retention of 2,2,4-trimethylpentane is related to the hydrocarbon-induced nephropathy observed specifically in male rats.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
研究了2,2,4-三甲基戊烷在雄性和雌性Fischer 334大鼠体内的代谢分布。大鼠通过口服单次给予(14)C标记的2,2,4-三甲基戊烷(4.4 mmol/kg;2微Ci/mmol)。在给药后4、8、12、24和48小时分别测定肾脏、肝脏和血浆中的放射性标记物质。雄性大鼠肾脏、肝脏和血浆中2,2,4-三甲基戊烷来源的放射性活性的最大浓度出现在12小时后(分别为1252、1000和403 nmol当量/g),而雌性大鼠则在8小时后(分别为557、1163和317 nmol当量/g)。当以给药剂量的百分比表示峰值组织浓度时,注意到雄性大鼠肾脏中2,2,4-三甲基戊烷来源的放射性标记物的选择性保留。肾脏中2,2,4-三甲基戊烷来源的放射性标记浓度以非线性但剂量依赖性方式增加;在低剂量时肾脏与血浆的比例高于高剂量时。放射性标记物质在肾脏中的增加保留与雄性大鼠特异性蛋白,α2u-球蛋白在2,2,4-三甲基戊烷给药后24和48小时在肾脏中的显著增加有关。2,2,4-三甲基戊烷给药后48小时收集的总放射性在雄性和雌性大鼠尿液中相似(分别为剂量的32%和31%)。对2,2,4-三甲基戊烷的尿液代谢物进行鉴定和定量显示,雄性和雌性大鼠通过相同的途径并以相似的速度代谢2,2,4-三甲基戊烷。然而,雌性大鼠尿液中排泄的2,4,4-三甲基-2-戊醇的共轭物比雄性多。2,4,4-三甲基-2-戊醇是雄性大鼠肾脏中的主要代谢物,但在雌性大鼠肾脏中不存在。肾脏中2,4,4-三甲基-2-戊醇的保留可能是导致(14)C 2,2,4-三甲基戊烷来源放射性标记物清除延迟的原因。基于肾脏α2u-球蛋白浓度和肾脏2,4,4-三甲基-2-戊醇浓度的同时增加,推测这两者之间可能存在关联。因此,雄性大鼠特异性的2,4,4-三甲基-2-戊醇积累可能反映了一种代谢物-α2u-球蛋白复合物的积累。这可能与2,2,4-三甲基戊烷产生的雄性大鼠特异性肾毒性有关。
Metabolic disposition of 2,2,4-trimethylpentane was studied in male and female Fischer 334 rats. Rats were treated with a single oral dose of (14)C 2,2,4-trimethylpentane (4.4 mmol/kg; 2 microCi/mmol). Radiolabeled material in kidney, liver, and plasma was determined at 4, 8, 12, 24, and 48 hr after dosing. Maximum concentration of 2,2,4-trimethylpentane derived radioactivity in kidney, liver, and and plasma of male rats was found after 12 hr (1252, 1000, and 403 nmol eg/g, respectively), whereas those measured in females were found after 8 hr (557, 1163, and 317 nmol eq/g, respectively). A selective retention of the 2,2,4-trimethylpentane derived radiolabel in the kidneys of male rats was noted when peak tissue concentration was expressed as a percentage of administered dose. Kidney concentrations of 2,2,4-trimethylpentane derived radiolabel increased in a nonlinear, but dose dependent radiolabel increased in a nonlinear, but dose-dependent, manner; the kidney to plasma ratio was greater at low doses than at higher doses. Increased retention of radiolabel material in the kidney was associated with a significant increase in renal concentration of the male rat specific protein, alpha 2u-globulin, 24 and 48 hr after 2,2,4-trimethylpentane administration. Total radioactivity collected in urine 48 hr after 2,2,4-trimethylpentane administration was similar in males and females (32 and 31% of dose). Identification and quantitation of the urinary metabolites of 2,2,4-trimethylpentane showed that both male and female rats metabolize 2,2,4-trimethylpentane via the same pathway and at a similar rate. Female rats, however, excreted more conjugates of 2,4,4-trimethyl-2-pentanol in urine than males. 2,2,4-Trimethyl-2-pentanol was the major metabolite present in the male rat kidney, but was absent in the female rat kidney. The renal retention of 2,4,4-trimethyl-2-pentanol appears to account for the delayed clearance observed in the disposition of (14)C 2,2,4-trimethylpentane derived radiolabel. Based on the concomitant accumulations in renal alpha 2u-globulin concentration and renal 2,4,4-trimethyl-2-pentanol concentration, an association is speculated between these two components. The male rat specific accumulation of 2,4,4-trimethyl-2-pentanol may therefore reflect the accumulation of a metabolite-alpha 2u-globulin complex. This may be relevant to the male-rat-specific nephrotoxicity produced by 2,2,4-trimethyl-pentane.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
进行了一项研究,以确定吸入的烷烃及其代谢物的摄取速率和排泄途径是否对于支链烷烃相对于直链同分异构体有所不同。雄性F344/N大鼠通过仅鼻子吸入的方式暴露于1或350 ppm(14)C标记的正辛烷和异辛烷,持续2小时。收集了尿液、粪便以及暴露后3、6、9、18、24、30、42、54和66小时的呼出气体。也在暴露后1小时和2小时收集了呼出气体。异辛烷的消除主要是通过肾脏,而正辛烷则几乎等量地通过尿液和呼出的二氧化碳消除。异辛烷在70小时内通过肾脏排泄,而正辛烷的排泄在10到20小时后基本完成。在暴露后70小时,吸入1 ppm的正辛烷约有5%仍留在尸体中。作者建议,与正辛烷相比,异辛烷代谢物排泄的不同模式可能是影响这两种化合物之间肾毒性的一个因素。
A study was conducted to determine if the rate of uptake and route of excretion of inhaled hydrocarbons and their metabolites might be different for branched alkanes relative to straight chain isomers. Male F344/N rats were exposed by nose only inhalation to nominal concentrations of 1 or 350 ppm (14)C labeled octane and isooctane for a period of 2 hours. Urine and feces were collected as were exhalants at 3, 6, 9, 18, 24, 30, 42, 54, and 66 hr post exposure. Exhalants were also collected at 1 and 2 hr post exposure. Elimination was most exclusively via the kidneys for isooctane while octane was eliminated about equally in urine and as exhaled carbon dioxide. Isooctane was excreted through the kidneys over the entire 70 hr, whereas octane excretion was essentially completed after 10 to 20 hr. At 70 hr after exposure about 5% of the octane equivalents inhaled at 1 ppm remained in the carcass. The author suggests that the different patterns of metabolites excretion of isooctane compared to octane may be a factor affecting the differences in nephrotoxicity between these two compounds.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • TSCA:
    Yes
  • 危险等级:
    3
  • 危险品标志:
    Xn,F,N
  • 安全说明:
    S16,S29,S33,S60,S61,S62,S9
  • 危险类别码:
    R67,R38,R50/53,R11,R65
  • WGK Germany:
    1
  • 海关编码:
    2901 10 00
  • 危险品运输编号:
    UN 1262 3/PG 2
  • 危险类别:
    3
  • RTECS号:
    SA3320000
  • 包装等级:
    II
  • 危险标志:
    GHS02,GHS07,GHS08,GHS09
  • 危险性描述:
    H225,H304,H315,H336,H410
  • 危险性防范说明:
    P210,P273,P301 + P310,P331,P370 + P378,P501
  • 储存条件:
    储存注意事项: - 储存于阴凉、通风良好的库房中。 - 远离火源和热源,库温不宜超过37℃。 - 保持容器密封。 - 应与氧化剂分开存放,切忌混储。 - 使用防爆型照明和通风设施。 - 禁止使用易产生火花的机械设备和工具。 - 储区应备有泄漏应急处理设备和合适的收容材料。

SDS

SDS:a31ab6075647b0fd06e6ad5fc95ea1bd
查看
第一部分:化学品名称

制备方法与用途

化学性质

异辛烷是一种无色液体,具有较高的辛烷值,因此被广泛用作汽油的添加剂。

用途
  1. 测定汽油辛烷值:是测定汽油抗爆性能(抗震性)的标准燃料。主要用于汽油、航空汽油等的添加剂,以及有机合成中的非极性惰性溶剂。
  2. 有机合成和溶剂:异辛烷还用作有机合成原料及溶剂,适用于测定燃料油的辛烷值,用于气相色谱分析标准,并作为稀释剂。
  3. 其他用途:此外,它还可用于生产过程中作为稀释剂。
生产方法

异辛烷主要通过石油炼制获得,也可采用合成方法制造。例如,由异丁烯与异丁烷在无水氟化氢存在下反应得到;或以264抗氧剂的副产物和异丁烯聚合物为原料,经过蒸馏、加氢过程制得。

分类信息
  • 类别:易燃液体
  • 毒性分级:低毒
  • 急性毒性参考值
    • 吸入:大鼠 LC50: 20,000 毫克/立方米/2小时
  • 爆炸物危险特性:与空气混合可爆。
  • 可燃性危险特性:遇明火、高温或氧化剂易燃;燃烧时产生刺激烟雾。
  • 储运特性
    • 库房需通风低温干燥;
    • 需与其他氧化剂和酸类分开存放。
  • 灭火剂:干粉、干砂、二氧化碳、泡沫。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    异辛烷 在 air 、 11 wtpercent nickel nanoparticles supported on silica 作用下, 750.0 ℃ 、101.33 kPa 条件下, 反应 12.0h, 以84%的产率得到氢气
    参考文献:
    名称:
    负载在二氧化硅上的镍纳米颗粒,用于异辛烷的部分氧化
    摘要:
    使用乙二醇或水通过湿法浸渍在二氧化硅载体上合成了镍基纳米颗粒催化剂。X射线衍射和透射电子显微镜分析表明,使用乙二醇作为溶剂制备的Ni催化剂的粒度倾向于小于使用水时获得的Ni催化剂的粒度。测试所得催化剂在高重量时空速(WHSV)下对异辛烷的部分氧化(POX)的性能。将结果与通常用于同一反应的Rh基催化剂的结果进行了比较。在WHSV为13.8 h -1时,Ni / SiO 2与平均Ni粒径为16.6 nm的Ni / SiO 2催化剂相比,平均Ni粒径为6.8 nm的催化剂显示出更高的催化活性和稳定性,并具有更好的抗碳形成性。对于异辛烷的POX,具有较小Ni颗粒的催化剂的性能优于负载型Rh催化剂。为了进一步改善Ni的分散度并增强其在更高的WHSV且以毫秒为单位的停留时间下运行的能力,氧化铈被用作促进剂。还通过使用乙二醇作为溶剂的湿法浸渍法制备了二氧化铈促进的Ni催化剂。二氧化铈的添加对应于Ni纳
    DOI:
    10.1016/j.apcata.2017.08.015
  • 作为产物:
    描述:
    异丁烯铁粉 作用下, 以 为溶剂, 200.0~250.0 ℃ 、4.0 MPa 条件下, 反应 48.0h, 生成 异辛烷
    参考文献:
    名称:
    HYDROTHERMAL PRODUCTION OF ALKANES
    摘要:
    合成烷烃包括在催化剂的存在下,加热含有烯烃和水的混合物至水蒸气饱和压力或以上,从而将烯烃加氢生成烷烃和水,并将烷烃与水分离,得到烷烃。还原剂包括第一种金属,催化剂包括第二种金属。
    公开号:
    US20210107847A1
  • 作为试剂:
    描述:
    参考文献:
    名称:
    Detection of HO2. Radical in Metal Ion Catalyzed Decomposition of Hydrogen Peroxide
    摘要:
    DOI:
    10.1021/ja01568a025
点击查看最新优质反应信息

文献信息

  • Metal-free photoinduced C(sp3)–H borylation of alkanes
    作者:Chao Shu、Adam Noble、Varinder K. Aggarwal
    DOI:10.1038/s41586-020-2831-6
    日期:2020.10.29
    precious-metal catalysts for C-H bond cleavage and, as a result, display high selectivity for borylation of aromatic C(sp2)-H bonds over aliphatic C(sp3)-H bonds4. Here we report a mechanistically distinct, metal-free borylation using hydrogen atom transfer catalysis5, in which homolytic cleavage of C(sp3)-H bonds produces alkyl radicals that are borylated by direct reaction with a diboron reagent. The reaction
    硼酸及其衍生物是化学科学中最有用的试剂之一,其应用范围涵盖药物、农用化学品和功能材料。催化 CH 硼酸化是将这些和其他硼基团引入有机分子的有效方法,因为它可用于直接官能化原料化学品的 CH 键,而无需底物预活化1-3。这些反应传统上依赖贵金属催化剂进行 CH 键断裂,因此,与脂肪族 C(sp3)-H 键相比,芳族 C(sp2)-H 键的硼化显示出高选择性。在这里,我们报告了使用氢原子转移催化的机械上独特的无金属硼化反应 5,其中 C(sp3)-H 键的均裂产生的烷基自由基通过与二硼试剂直接反应而被硼化。该反应通过基于 N-烷氧基邻苯二甲酰亚胺的氧化剂和氯氢原子转移催化剂之间的紫光光诱导电子转移进行。不同寻常的是,更强的甲基 CH 键优先于较弱的二级、三级甚至苄基 CH 键被硼化。机理研究表明,高甲基选择性是形成氯自由基 - 硼酸盐复合物的结果,该复合物选择性地切割空间不受阻碍的 CH 键。通过使用光致氢原子转移策略,
  • Halogenated hydrocarbons and method for their preparation
    申请人:DU PONT
    公开号:US02440800A1
    公开(公告)日:1948-05-04

    Telomers are prepared by subjecting aliphatic mono-olefines and a substance YZ to elevated temperature and pressure in the presence of an ethylene polymerization catalyst. The substance YZ is defined as being free from aliphatic carbon-carbon unsaturation and capable of forming monovalent fragments Y and Z, one of which is an inorganic acid radicle and the other is either an inorganic acid radicle or a radicle containing carbon and which is (a) a halogen, e.g. chlorine, bromine and iodine; (b) a halogen containing carbon compound, e.g. chloriodoform, a -brompropionic acid, propyl trichloracetate, chloracetic anhydride, chlorpropionaldehyde, ethylene bromhydrin, glycerol a -monochlorhydrin, monochlormethyl ether, methyl chloride and chloracetyl chloride; (c) or compounds containing halogen in combination with an inorganic acid radicle, e.g. cyanogen chloride and bromide; (d) a sulphur halide, e.g. benzene sulphonyl chloride and sulphuryl chloride; (e) cyanogen; or (f) an ester of an inorganic acid, e.g. triethyl borate, tetraethyl silicate, tributyl phosphate and methyl sulphate. Suitable catalysts are oxygen, hydrogen, acetyl, benzoyl, diethyl and tetrahydronaphthalene peroxides, alkali ammonium persulphates, perborates and percarbonates, tetraethyl and tetraphenyl lead, ultra-violet light especially in the presence of photosensitizers such as mercury, alkyl iodides, benzoin and acetone, di-, tri-methylamine oxides dibenzoyl hydrazine, hydrazine hydrochloride and sebacate and hexachloroethane water solvents, e.g. isooctane, cyclohexane, benzene and dioxane, surface active agents, e.g. sodium acetoxyoctadecyl sulphate, buffers, and substances capable of forming interpolymers with olefines, e.g. vinyl compounds and unsaturated acids, esters and ketones may be present. Examples describe the telomerization of ethylene and carbon tetrachloride (1 to 5); chloroform (6 to 7); methylene chloroiodide (8); chloral hydrate (9); 1,1,1-trichloroethane (10); ethyl dichloroacetate (11); dichloroacetic acid (12); hexachloroethane (13); tetra- and pentra-chloroethylbenzenes (14); hexachlorobenzene (15); trichlorofluoromethane (16); dimethyl sulphate (17); ethyl orthosilicate (18); sulphuryl chloride (19); ethyl iodide (20); a ,a 1-dichloro-dimethyl ether (25); isobutylene and carbon tetrachloride (21); ethylene carbon tetrachloride and n-octene-1 (22), styrene (23); and vinyl chloride (24). The products may contain pure compounds, e.g. of the type Cl(CH2.CH2)nCCl3, where n is an integer. They may be used as solvents, heat transfer media, plasticisers, wax substitutes, coating materials and as additions to lubricating oils. Specifications 471,590, 497,643, 578,584 and 581,900 are referred to.

    端粒是通过将脂肪族单烯烃和一种名为YZ的物质在乙烯聚合催化剂存在下在高温高压下处理制备的。物质YZ被定义为不含脂肪族碳碳不饱和度并且能够形成一价片段Y和Z的物质,其中一个是无机酸基团,另一个是含碳的无机酸基团或含有碳的基团,其为(a) 卤素,例如氯、溴和碘;(b) 含碳卤素化合物,例如氯碘甲烷、α-溴丙酸、三氯乙酸丙酯、氯乙酸酐、氯丙醛、溴水合乙烯、甘油α-单氯水合物、单氯甲基醚、氯化甲烷和氯乙酰氯;(c) 或含有卤素与无机酸基团结合的化合物,例如氰化氯和溴化物;(d) 硫卤素,例如苯磺酰氯和亚砜氯;(e) 氰化物;或(f) 无机酸酯,例如三乙基硼酸酯、四乙基硅酸酯、三丁基磷酸酯和硫酸甲酯。适用的催化剂包括氧气、氢气、乙酰、苯甲酰、双乙基和四氢萘过氧化物、碱金属过硫酸盐、过硼酸盐和过碳酸盐、四乙基和四苯基铅、紫外光尤其在存在光敏剂如汞、烷基碘化物、苯甲醇和丙酮、二甲基胺氧化物、二苯甲酰肼、盐酸和己二酸和六氯乙烷水溶剂,例如异辛烷、环己烷、苯和二噁烷、表面活性剂,例如乙酰氧基十八烷基硫酸钠、缓冲剂和能够与烯烃形成共聚物的物质,例如乙烯化合物和不饱和酸、酯和酮可能存在。示例描述了乙烯和四氯化碳(1至5);氯仿(6至7);氯碘甲烷(8);氯乙醛(9);1,1,1-三氯乙烷(10);二氯乙酸乙酯(11);二氯乙酸(12);六氯乙烷(13);四氯和五氯乙基苯(14);六氯苯(15);三氟氯甲烷(16);硫酸二甲酯(17);正硅酸乙酯(18);亚砜氯(19);碘化乙基(20);α,α'-二氯二甲醚(25);异丁烯和四氯化碳(21);乙烯四氯化碳和正辛烯-1(22)、苯乙烯(23);和氯乙烯(24)的端粒化反应。产品可能含有纯化合物,例如Cl(CH2.CH2)nCCl3类型的化合物,其中n是整数。它们可用作溶剂、传热介质、增塑剂、蜡替代品、涂料材料以及添加到润滑油中。规范471,590、497,643、578,584和581,900被提及。
  • Thermischer zerfall von β-phenyl- und β,β-diphenyl- nitroalkanen
    作者:Katharina Fritzsche、Hans-Dieter Beckhaus、Christoph Rüchardt
    DOI:10.1016/0040-4039(88)85215-8
    日期:1988.1
    Elimination of nitrous acid is the exclusive reaction path for the thermal decomposition of the nitroalkanes 1, 2 and 5. Homolytic CC-cleavage cannot compete. A concerted β-elimination is the favoured mechanism.
    消除亚硝酸是硝基烷1、2和5热分解的唯一反应途径。均质CC裂解无法竞争。一致的β-消除是最受青睐的机制。
  • SUBSTITUTED CARBAMOYLCYCLOALKYL ACETIC ACID DERIVATIVES AS NEP
    申请人:KARKI Rajeshri Ganesh
    公开号:US20120122764A1
    公开(公告)日:2012-05-17
    The present invention provides a compound of formula I; or a pharmaceutically acceptable salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , B, X, m and n are defined herein. The invention also relates to a method for manufacturing the compounds of the invention, and its therapeutic uses. The present invention further provides pharmaceutical composition of compounds of the invention, and a combination of pharmacologically active agents and a compound of the invention.
    本发明提供了一种具有化学式I的化合物; 或其药学上可接受的盐,其中R 1 ,R 2 ,R 3 ,R 4 ,R 5 ,B,X,m和n在此处被定义。该发明还涉及制造该发明化合物的方法及其治疗用途。本发明进一步提供了该发明化合物的药物组合物,以及具有药理活性剂和该发明化合物的组合。
  • Oxidations by the reagent “O2–H2O2–vanadium derivative–pyrazine-2-carboxylic acid’. Part 12. Main features, kinetics and mechanism of alkane hydroperoxidation†
    作者:Georgiy B. Shul’pin、Yuriy N. Kozlov、Galina V. Nizova、Georg Süss-Fink、Sandrine Stanislas、Alex Kitaygorodskiy、Vera S. Kulikova
    DOI:10.1039/b101442k
    日期:——
    Various combinations of vanadium derivatives (n-Bu4NVO3 is the best catalyst) with pyrazine-2-carboxylic acid (PCA) catalyse the oxidation of saturated hydrocarbons, RH, with hydrogen peroxide and air in acetonitrile solution to produce, at temperatures <40 °C, alkyl hydroperoxides, ROOH, as the main primary products. These compounds are easily reduced with triphenylphosphine to the corresponding alcohols
    钒衍生物的各种组合(n -Bu 4 NVO 3是最好的催化剂),用吡嗪-2-羧酸(PCA)催化饱和烃RH的氧化,用过氧化氢和空气在乙腈溶液中的氧化,在<40°C的温度下生成烷基氢过氧化物ROOH作为主要催化剂农产品。这些化合物容易被三苯基膦还原成相应的醇,然后可以通过GLC定量测定。某些类似于PCA的氨基酸可以起到助催化剂的作用;但是,吡啶甲酸和咪唑-4,5-二羧酸的氧化速率和最终产物收率较低,而咪唑-4-羧酸和吡唑-3,5-二羧酸几乎没有活性。羟基自由基对烷烃RH的攻击引起氧化,从而产生烷基R 4。后者进一步与分子大气中的氧迅速反应。这样形成的过氧自由基ROO 3可以转化为氢过氧化物烷基。根据对环己烷氧化的动力学研究,我们得出结论,反应的限速步骤是含有一个配位PCA分子的复合物的单分子分解:VV(PCA)(H 2 O 2)→V IV(PCA)+HOO˙+ H +。在V IV由此物种发生反应形成进一步与第二H
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台