Photoredox Catalysis Enables Decarboxylative Cyclization with Hypervalent Iodine(III) Reagents: Access to 2,5-Disubstituted 1,3,4-Oxadiazoles
作者:Jian Li、Xue-Chen Lu、Yue Xu、Jin-Xia Wen、Guo-Quan Hou、Li Liu
DOI:10.1021/acs.orglett.0c03663
日期:2020.12.18
A novel approach to 2,5-disubstituted 1,3,4-oxadiazoles derivatives via a decarboxylative cyclization reaction by photoredox catalysis between commercially available α-oxocarboxylic acids and hypervalent iodine(III) reagent is described. This powerful transformation involves the coupling reaction between two different kinds of radical species and the formation of C–N and C–O bonds.
Organophotoredox assisted cyanation of bromoarenes <i>via</i> silyl-radical-mediated bromine abstraction
作者:Maniklal Shee、Sk. Sheriff Shah、N. D. Pradeep Singh
DOI:10.1039/d0cc00163e
日期:——
The insertion of a nitrile (–CN) group into arenes through the direct functionalization of the C(sp2)–Br bond is a challenging reaction. Herein, we report an organophotoredox method for the cyanation of aryl bromides using the organic photoredox catalyst 4CzIPN and tosyl cyanide (TsCN) as the nitrile source. A photogenerated silyl radical, via a single electron transfer (SET) mechanism, was employed
2,4,5,6-Tetrakis(3,6-di-tert-butyl-9H-carbazol-9-yl)isophthalonitrile (4CzIPN-tBu) was developed as a photocatalyst for the phosphorus-radical-initiated cascade cyclization reaction of isocyanides. By using 4CzIPN-tBu as catalyst, we developed a visible-light-induced proton-coupled electron transfer strategy for the generation of phosphorus-centered radicals, via which a wide range of phosphorylated
The present invention relates to an organic mixture and an application thereof in organic electronic devices. The organic mixture comprises a spirofluorene organic compound containing a fused heterocyclic ring and an aromatic fused heterocyclic organic compound containing an electron-donating group. A combination of the two materials may be used as a host material of a phosphorescent organic light-emitting diode (OLED), which may use the energy of excitons and balance the charge transport to the greatest extent and which may effectively reduce the concentration of excitons and the operating voltage of a corresponding device, thereby effectively improving the efficiency and service life of the related electronic device in order to provide an effective solution for improving the overall performance of an organic electronic device.
[EN] SELECTIVE VALORIZATION OF BIOMASS SUGARS<br/>[FR] VALORISATION SÉLECTIVE DE SUCRES DE BIOMASSE
申请人:MASSACHUSETTS INST TECHNOLOGY
公开号:WO2021127642A1
公开(公告)日:2021-06-24
Disclosed are methods of forming an epimer or a dehydrated isomer of a pyranose monosaccharide or a pyranose saccharide residue in an oligosaccharide or a glycoside.