Engineering of co-ordination polymers of trans-4,4′-azobis(pyridine) and trans-1,2-bis(pyridin-4-yl)ethene: a range of interpenetrated network motifs
作者:Matthew A. Withersby、Alexander J. Blake、Neil R. Champness、Paul A. Cooke、Peter Hubberstey、Annabel L. Realf、Simon J. Teat、Martin Schröder
DOI:10.1039/b006543i
日期:——
Crystallisation experiments involving cobalt(II), copper(I), copper(II) or cadmium(II) and trans-4,4â²-azobis(pyridine) (4,4â²-azpy) or trans-1,2-bis(pyridin-4-yl)ethene (bpe) yield M2(NO3)4(L)3(CH2Cl2)(H2O)x (M = Co, L = 4,4â²-azpy, x = 0 1; M = Cd, L = 4,4â²-azpy, x = 2 2; M = Co, L = bpe, x = 0 6), Cu(BF4)(L)2 (L = 4,4â²-azpy 3; L = bpe 10), Cu(BF4)2(L)2(H2O)2 (L = 4,4â²-azpy 4; L = bpe 9) and Cd(NO3)2(bpe) 8. Crystals suitable for X-ray diffraction analysis were obtained for the 4,4â²-azpy complexes 1â3 and Cu(SiF6)(4,4â²-azpy)2(H2O)35, prepared during recrystallisation of 4, but not for any of the complexes of bpe. The molecular architectures of the 4,4â²-azpy co-ordination polymer networks are metal centre dependent, the preferred co-ordination geometries of Co(NO3)2/Cd(NO3)2 (T-shaped connecting unit), Cu(I) (tetrahedral connecting unit) and JahnâTeller distorted Cu(II) (square planar connecting unit) dictating the formation of herringbone, adamantoid and square grid constructions for [M2(NO3)4(μ-4,4â²-azpy)3]·CH2Cl2·xH2O}â (M = Co, x = 0 1; M = Cd, x = 2 2), [Cu(μ-4,4â²-azpy)2][BF4]}â3 and [Cu(H2O)2}(μ-4,4â²-azpy)2][SiF6]·H2O}â5, respectively. All three networks display interpenetration; three-fold parallel interpenetration of novel herringbone sheets in 1 and 2, five-fold interpenetration of adamantoid networks in 3, and inclined perpendicular interpenetration of rhombically distorted sheets in 5. Despite the interpenetration, cavities are present in all three of the architectures and these are filled by anions and/or guest solvent molecules.
含钴(II)、铜(I)、铜(II)或镉(II)和反式-4,4'-偶氮二(吡啶) (4,4'-偶氮吡啶)或反式-1,2-双(吡啶-4-基)乙烯 (bpe)的晶体化实验得到M2(NO3)4(L)3(CH2Cl2)(H2O)x (M = Co, L = 4,4'-偶氮吡啶, x = 0 1; M = Cd, L = 4,4'-偶氮吡啶, x = 2 2; M = Co, L = bpe, x = 0 6), Cu(BF4)(L)2 (L = 4,4'-偶氮吡啶 3; L = bpe 10), Cu(BF4)2(L)2(H2O)2 (L = 4,4'-偶氮吡啶 4; L = bpe 9)和Cd(NO3)2(bpe) 8。适合进行X射线衍射分析的含4,4'-偶氮吡啶的晶体有1-3和Cu(SiF6)(4,4'-偶氮吡啶)2(H2O)3·5 (由4再结晶得到), 但没有发现含bpe的晶体。含4,4'-偶氮吡啶配位聚合物网络的分子结构依赖于金属中心, 钴(NO3)2/镉(NO3)2的T形连接单元、Cu(I)的四面体连接单元和Jahn-Teller变形Cu(II)的平面方形连接单元分别形成了人字形、金刚石和方形网格结构[M2(NO3)4(μ-4,4'-偶氮吡啶)3]·CH2Cl2·xH2O}˜ (M = Co, x = 0 1; M = Cd, x = 2 2), [Cu(μ-4,4'-偶氮吡啶)2][BF4]}˜3和[Cu(H2O)2}(μ-4,4'-偶氮吡啶)2][SiF6]·H2O}˜5。三种网络均发生互相穿插; 1和2为人字形片层的3重平行互相穿插, 3为金刚石网络的5重互相穿插, 5为菱形扭曲片层的倾斜正交互相穿插。尽管出现互相穿插, 但在三种结构中仍存在孔道并有阴离子或溶剂分子客体填充其中。