摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

L-guanosine | 26578-09-6

中文名称
——
中文别名
——
英文名称
L-guanosine
英文别名
guanosine;L-Guanosine;2-amino-9-[(2S,3S,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-purin-6-one
L-guanosine化学式
CAS
26578-09-6
化学式
C10H13N5O5
mdl
——
分子量
283.244
InChiKey
NYHBQMYGNKIUIF-GIMIYPNGSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    775.9±70.0 °C(Predicted)
  • 密度:
    2.25±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -1.9
  • 重原子数:
    20
  • 可旋转键数:
    2
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    155
  • 氢给体数:
    5
  • 氢受体数:
    7

安全信息

  • 危险性防范说明:
    P261,P280,P301+P312,P302+P352,P305+P351+P338
  • 危险性描述:
    H302,H315,H320,H335

SDS

SDS:d66140e99068426945c75280bacbb458
查看

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    L-guanosine溶剂黄146 作用下, 以 二甲基亚砜 为溶剂, 反应 39.25h, 生成 7-benzylxanthine
    参考文献:
    名称:
    [EN] XANTHINE CB1 INHIBITORS
    [FR] INHIBITEURS DE XANTHINE CB1
    摘要:
    揭示了具有结构式(I)的化合物,以及相关的药物组合物。还揭示了治疗方法,例如治疗糖尿病肾病、糖尿病肾病、肥胖相关肾病、节段性肾小球硬化、IgA肾病、肾病综合征、肾脏纤维化、普拉德威利综合征、代谢综合征、胃肠疾病、非酒精性肝病、酒精性肝病或非酒精性脂肪肝病,使用式(I)的化合物。
    公开号:
    WO2021062089A1
  • 作为产物:
    参考文献:
    名称:
    从d-半乳糖立体定向合成l-核糖和l-核糖苷
    摘要:
    通过温和的反应条件,将廉价的d-半乳糖转化为1-核糖及其衍生物。根据Vorbrüggen的条件对1-核糖基供体进行糖苷化,以高产率得到1-核糖苷。
    DOI:
    10.1016/s0040-4039(01)01623-9
点击查看最新优质反应信息

文献信息

  • Macrocyclic compounds as inhibitors of viral replication
    申请人:Blatt M. Lawrence
    公开号:US20050267018A1
    公开(公告)日:2005-12-01
    The embodiments provide compounds of the general formulas I-XIX, as well as compositions, including pharmaceutical compositions, comprising a subject compound. The embodiments further provide treatment methods, including methods of treating flaviviral infection, including hepatitis C virus infection and methods of treating liver fibrosis, the methods generally involving administering to an individual in need thereof an effective amount of a subject compound or composition.
    该实施例提供了一般式I-XIX的化合物,以及包括药物组合在内的组合物,其中包括一种主体化合物。该实施例还提供了治疗方法,包括治疗黄病毒感染的方法,包括丙型肝炎病毒感染的方法和治疗肝纤维化的方法,这些方法通常涉及向需要的个体施用一种主体化合物或组合物的有效量。
  • Total Chemical Synthesis and Folding of All-<scp>l</scp> and All-<scp>d</scp> Variants of Oncogenic KRas(G12V)
    作者:Adam M. Levinson、John H. McGee、Andrew G. Roberts、Gardner S. Creech、Ting Wang、Michael T. Peterson、Ronald C. Hendrickson、Gregory L. Verdine、Samuel J. Danishefsky
    DOI:10.1021/jacs.7b02988
    日期:2017.6.7
    of hydrophobic binding pockets. Herein, we report a total chemical synthesis of all-l- and all-d-amino acid biotinylated variants of oncogenic mutant KRas(G12V). The protein is synthesized using Fmoc-based solid-phase peptide synthesis and assembled using combined native chemical ligation and isonitrile-mediated activation strategies. We demonstrate that both KRas(G12V) enantiomers can successfully
    Ras 蛋白是参与细胞增殖和存活调节的重要 GTP 酶。Ras 的突变致癌形式会改变效应子结合和先天 GTP 酶活性,导致下游信号转导失调。Ras 的突变形式与大约 30% 的人类癌症有关。尽管数十年来一直致力于开发直接 Ras 抑制剂,但 Ras 长期以来一直被认为是“不可成药的”,因为它对 GTP 具有高亲和力并且缺乏疏水性结合袋。在此,我们报告了致癌突变体 KRas(G12V) 的全 L-和全 D-氨基酸生物素化变体的全化学合成。该蛋白质使用基于 Fmoc 的固相肽合成法合成,并使用组合的天然化学连接和异腈介导的激活策略进行组装。我们证明两种 KRas(G12V) 对映体都可以成功折叠并结合核苷酸底物和结合配偶体,并具有可观察到的对映体歧视。通过证明镜像形式的 KRas 与其相应的对映体三磷酸核苷酸结合的功能能力,本研究为利用该材料进行进一步的生化研究奠定了基础。特别是,这种蛋白质将使镜像酵母表面展示实验能够识别致癌
  • L-ribonucleosides from L-xylose
    作者:E Moyroud
    DOI:10.1016/s0040-4020(98)01119-3
    日期:1999.1.29
    L-Xylose was converted into a L-ribose derivative via an oxidation/reduction procedure. The L-ribosyl donor was submitted to a glycosidation reaction according to Vorbrüggen's conditions to give L-ribonucleosides (L-uridine, L-cytidine, L-adenosine and L-guanosine) in high yield.
    通过氧化/还原程序将L-木糖转化为L-核糖衍生物。根据Vorbrüggen的条件,使L-核糖基供体进行糖苷化反应,以高产率得到L-核糖核苷(L-尿苷,L-胞苷,L-腺苷和L-鸟苷)。
  • A cross-chiral RNA polymerase ribozyme
    作者:Jonathan T. Sczepanski、Gerald F. Joyce
    DOI:10.1038/nature13900
    日期:2014.11.20
    Here, a cross-chiral RNA polymerase is developed—an RNA enzyme that can catalyse the templated polymerization of activated mononucleotides that are of the opposite handedness—shedding light on how RNA-based life could have emerged. It is widely assumed that homochirality is a requirement for life and that biological macromolecules must be of the same stereochemical 'handedness' to interact efficiently. Working with Leslie Orgel and others, Gerald Joyce extended this idea in 1984 to suggest that homochirality may also be essential for the origins of life, as templated polymerization of RNA occurs readily in a homochiral system but is impaired in racemic mixtures. Now Joyce and co-author Jonathan Sczepanski show that RNAs of opposing chirality can work together. They devised a D-RNA enzyme that catalyses the polymerization of L-RNA on a L-RNA template — and vice versa. The catalytic potency of this ribozyme is sufficient for it to synthesize its own enantiomer by joining 11 component oligonucleotides. The ribozyme is thought to interact with its substrates via tertiary contacts rather than Watson–Crick base pairing. This unexpected finding will add a new dimension to thoughts on how life could have emerged in an 'RNA world'. Thirty years ago it was shown that the non-enzymatic, template-directed polymerization of activated mononucleotides proceeds readily in a homochiral system, but is severely inhibited by the presence of the opposing enantiomer1. This finding poses a severe challenge for the spontaneous emergence of RNA-based life, and has led to the suggestion that either RNA was preceded by some other genetic polymer that is not subject to chiral inhibition2 or chiral symmetry was broken through chemical processes before the origin of RNA-based life3,4. Once an RNA enzyme arose that could catalyse the polymerization of RNA, it would have been possible to distinguish among the two enantiomers, enabling RNA replication and RNA-based evolution to occur. It is commonly thought that the earliest RNA polymerase and its substrates would have been of the same handedness, but this is not necessarily the case. Replicating d- and l-RNA molecules may have emerged together, based on the ability of structured RNAs of one handedness to catalyse the templated polymerization of activated mononucleotides of the opposite handedness. Here we develop such a cross-chiral RNA polymerase, using in vitro evolution starting from a population of random-sequence RNAs. The d-RNA enzyme, consisting of 83 nucleotides, catalyses the joining of l-mono- or oligonucleotide substrates on a complementary l-RNA template, and similar behaviour occurs for the l-enzyme with d-substrates and a d-template. Chiral inhibition is avoided because the 106-fold rate acceleration of the enzyme only pertains to cross-chiral substrates. The enzyme’s activity is sufficient to generate full-length copies of its enantiomer through the templated joining of 11 component oligonucleotides.
    这里研制了一种交叉手性的RNA聚合酶(一种能够催化与自身手性相反的活化单核苷酸模板聚合的RNA酶),为基于RNA的生命如何起源提供了启示。普遍认为手性均一是生命的要求,生物大分子必须具有一样的立体化学"手性"才能有效相互作用。与 Leslie Orgel 等人一起,Gerald Joyce于1984年提出手性均一对于生命起源可能同样是必不可少,因为在手性均一系统中RNA的模板聚合反应能顺畅进行,而外消旋混合物中反应会受阻。现在Joyce和合作者Jonathan Sczepanski表明手性相反的RNAs可以在一起工作。他们设计出一种能够催化L-RNA在L-RNA模板上聚合的D-RNA酶,反之亦然。这种核酶的催化效率足以通过连接11个寡核苷酸组份来合成其对映体。人们认为这种核酶与底物间的相互作用是通过三级结构接触而非Watson-Crick碱基配对实现的。这一发现会为"RNA世界"中的生命如何起源开启新的思路。30年前就已经表明,非酶催化的模板调控活化单核苷酸聚合反应在手性均一系统中进行顺畅,但会严重抑制于相反手性的存在。这一发现使得RNA为基础的生命如何自发产生成为一个难题,由此带来RNA可能之前存在某种不受手性抑制的其他遗传聚合物,或是基于RNA的生命之前存在化学过程打破手性对称性两种猜想。一旦产生了一种能催化RNA聚合的RNA酶,就有可能分辨两种对映体,从而发生RNA复制和基于RNA的进化。普遍认为最原始的RNA聚合酶及底物手性一致,但不一定是这种情形。复制D手性及L手性的RNA分子可能会同时出现,基于一种手性的RNA结构可以催化相反手性的活化单核苷酸的模板聚合。这里我们用随机序列RNA群体为起始的体外进化研发出这样一种交叉手性的RNA聚合酶。由83个核苷酸组成的D-RNA酶催化L手性单核苷酸或寡核苷酸底物在互补的L手性模板上聚合,反之对L-酶及D-底物和D-模板也成立。因为这种酶的106倍的速率加速只对应于交叉手性底物,从而避开了手性抑制。这种酶活性足以通过模板调控连接11个寡核苷酸产生出其对映体的全长拷贝。
  • Complexes of palladium (II) with L-proline. Mixed L-prolinato nucleoside complexes of Palladium (II)
    作者:George Pneumatikakis
    DOI:10.1016/s0277-5387(00)84704-x
    日期:1984.1
    structure in which the nucleoside bridges two adjacent palladium atoms through its N(7) and the exocyclic O(6) atoms. Reaction in dmso gave the complex Pd(Pro)(Nucl)Cl in which the nucleoside act as monodentate ligands with their N(7) atom as ligation site. In aqueous solutions these complexes are quantitatively transformed to the polymeric analogues with the liberation of HCl. The nucleoside adenosine (Ado)
    氯化钯(II)与L-脯氨酸(ProH)在水溶液中的反应生成二聚体复合物Pd(Pro)Cl 2,通过元素分析,分子量,电导率测量以及IR和NMR光谱对其进行表征。该配合物与嘌呤核苷肌苷或鸟苷(Nucl)进一步反应,并且配合物Pd(Pro)(Nucl-H +)从水溶液中分离出来。这些配合物的不溶性表明它是一种相当聚合的结构,其中核苷通过其N(7)和环外O(6)原子桥接两个相邻的钯原子。在dmso中的反应产生了复合物Pd(Pro)(Nucl)Cl,其中核苷以其N(7)原子为连接位点充当单齿配体。在水溶液中,随着HCl的释放,这些络合物被定量转化为聚合物类似物。核苷腺苷(Ado)以不同方式反应,仅生成二聚体复合物[Cl(Pro)PdAdoPd(Pro)Cl],其中腺苷通过其N(1)和N(7)原子桥接两个钯原子。最后,用嘧啶核苷胞苷(Cyd)分离单体Pd(Pro)(Cyd)Cl。
查看更多