Efavirenz is principally metabolized by the cytochrome P450 system to hydroxylated metabolites with subsequent glucuronidation of these hydroxylated metabolites. These metabolites are essentially inactive against HIV-1.
Efavirenz was metabolized extensively by all the species as evidenced by the excretion of none or trace quantities of parent compound in urine. Significant species differences in the metabolism of efavirenz were observed. The major metabolite excreted in the urine of all species was the O-glucuronide conjugate (M1) of the 8-hydroxylated metabolite. Efavirenz was also metabolized by direct conjugation with glucuronic acid, forming the N-glucuronide (M2) in all five species. The sulfate conjugate of 8-OH efavirenz (M3) was found in the urine of rats and cynomolgus monkeys but not in humans. In addition to the aromatic ring-hydroxylated products, metabolites with a hydroxylated cyclopropane ring (at C14) were also isolated. GSH-related products of efavirenz were identified in rats and guinea pigs. The cysteinylglycine adduct (M10), formed from the GSH adduct (M9), was found in significant quantities in only rat and guinea pig urine and was not detected in other species. In vitro metabolism studies were conducted to show that the GSH adduct was produced from the cyclopropanol intermediate (M11) in the presence of only rat liver and kidney subcellular fractions and was not formed by similar preparations from humans or cynomolgus monkeys. These studies indicated the existence of a specific glutathione-S-transferase in rats capable of metabolizing the cyclopropanol metabolite (M11) to the GSH adduct, M9.
Efavirenz is a substrate for cytochrome p450 isoforms, particularly CYP3A4 and CYP2B6. The 8-hydroxy metabolite is excreted in the urine, and the glucuronide conjugate of 8-hydroxy-efavirenz is present in plasma and urine. Sixty percent of the dose is excreted in urine as the glucuronide conjugate.
来源:Hazardous Substances Data Bank (HSDB)
代谢
Efavirenz 已知的人类代谢物包括 8-羟基Efavirenz。
Efavirenz has known human metabolites that include 8-hydroxyefavirenz.
Serum aminotransferase elevations above 5 times the upper limit of normal occur in 1% to 8% of patients on efavirenz, and this rate is higher in patients who have HCV coinfection. Clinically apparent hepatotoxicity due to efavirenz is rare, but many convincing cases have been published. The liver injury is usually immunoallergic in pattern and arises within 1 to 8 weeks of starting therapy. Signs of hypersensitivity are less common than with nevirapine hepatotoxicity, but symptoms can include rash, fever, and eosinophilia and sometimes facial edema, lymphadenoapthy and lymphocytosis (Cases 1 and 2). Autoantibody formation is rare. The serum enzyme pattern is variable, typically cholestatic or mixed, but sometimes hepatocellular, these cases being more severe, likely to show submassive necrosis on liver biopsy and associated with a high fatality rate. In general, however, recovery is rapid upon stopping therapy.
Oral bioavailability of efavirenz may be affected by administration with food. Administration of a single 600-mg dose of efavirenz as capsules with a high-fat, high-calorie meal (894 kcal, 54 g fat, 54% of calories from fat) or a reduced-fat, normal-calorie meal (440 kcal, 2 g fat, 4% of calories from fat) increases peak plasma concentrations of the drug by 39 or 51%, respectively, and AUC by 22 or 17%, respectively, compared with administration in the fasting state. Administration of a single 600-mg dose of efavirenz as tablets with a high-fat, high-calorie meal (approximately 1000 kcal, 500-600 kcal from fat) increases peak plasma concentrations and AUC of the drug by 79 and 28%, respectively, compared with administration in the fasting state.
Efavirenz is excreted principally in the feces, both as unchanged drug and metabolites. Excretion of efavirenz has been evaluated in individuals receiving 400 mg daily for 1 month. Following oral administration of 400 mg of radiolabeled efavirenz on day 8, 14-34% of the dose was excreted in urine (less than 1% as unchanged drug), and 16-61% was excreted in feces (predominantly as unchanged drug).
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
Efavirenz大约有99.5-99.75%与血浆蛋白结合,主要是白蛋白。
Efavirenz is about 99.5-99.75% bound to plasma proteins, principally albumin.
In HIV-infected adults receiving efavirenz 200, 400, or 600 mg once daily, peak plasma concentrations of the drug generally occur in 3-5 hours and steady-state plasma concentrations are achieved in 6-10 days. Following continued administration of efavirenz, plasma concentrations are lower than expected from single-dose studies, presumably because of increased clearance of the drug. In one study in individuals receiving efavirenz 200-400 mg once daily for 10 days, plasma concentrations of the drug were 22-42% lower than those predicted from single-dose studies. Following oral administration of efavirenz 600 mg once daily in HIV-infected adults, peak plasma concentration, trough plasma concentration, and AUC of the drug at steady-state averaged 4.1 mcg/mL, 1.8 mcg/mL, and 58. mcg*hour/mL, respectively.
[EN] SPIROCYCLIC HETEROCYCLE COMPOUNDS USEFUL AS HIV INTEGRASE INHIBITORS<br/>[FR] COMPOSÉS HÉTÉROCYCLIQUES SPIROCYCLIQUES UTILES COMME INHIBITEURS DU VIH
申请人:MERCK SHARP & DOHME
公开号:WO2016094198A1
公开(公告)日:2016-06-16
The present invention relates to Spirocyclic Heterocycle Compounds of Formula (I): (I) and pharmaceutically acceptable salts thereof, wherein A, B, X, R1, R2, R3 and R4 are as defined herein. The present invention also relates to compositions comprising at least one Spirocyclic Heterocycle Compound, and methods of using the Spirocyclic Heterocycle Compounds for treating or preventing HIV infection in a subject.
3-Aminocyclopentanecarboxamides as modulators of chemokine receptors
申请人:Xue Chu-Biao
公开号:US20060004018A1
公开(公告)日:2006-01-05
The present invention is directed to compounds of Formula I:
which are modulators of chemokine receptors. The compounds of the invention, and compositions thereof, are useful in the treatment of diseases related to chemokine receptor expression and/or activity.
[EN] DERIVATIVES OF AMANITA TOXINS AND THEIR CONJUGATION TO A CELL BINDING MOLECULE<br/>[FR] DÉRIVÉS DE TOXINES D'AMANITES ET LEUR CONJUGAISON À UNE MOLÉCULE DE LIAISON CELLULAIRE
申请人:HANGZHOU DAC BIOTECH CO LTD
公开号:WO2017046658A1
公开(公告)日:2017-03-23
Derivatives of Amernita toxins of Formula (I), wherein, formula (a) R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, X, L, m, n and Q are defined herein. The preparation of the derivatives. The therapeutic use of the derivatives in the targeted treatment of cancers, autoimmune disorders, and infectious diseases.
[EN] A CONJUGATE OF A CYTOTOXIC AGENT TO A CELL BINDING MOLECULE WITH BRANCHED LINKERS<br/>[FR] CONJUGUÉ D'UN AGENT CYTOTOXIQUE À UNE MOLÉCULE DE LIAISON CELLULAIRE AVEC DES LIEURS RAMIFIÉS
申请人:HANGZHOU DAC BIOTECH CO LTD
公开号:WO2020257998A1
公开(公告)日:2020-12-30
Provided is a conjugation of cytotoxic drug to a cell-binding molecule with a side-chain linker. It provides side-chain linkage methods of making a conjugate of a cytotoxic molecule to a cell-binding ligand, as well as methods of using the conjugate in targeted treatment of cancer, infection and immunological disorders.
[EN] CROSS-LINKED PYRROLOBENZODIAZEPINE DIMER (PBD) DERIVATIVE AND ITS CONJUGATES<br/>[FR] DÉRIVÉ DE DIMÈRE DE PYRROLOBENZODIAZÉPINE RÉTICULÉ (PBD) ET SES CONJUGUÉS
申请人:HANGZHOU DAC BIOTECH CO LTD
公开号:WO2020006722A1
公开(公告)日:2020-01-09
A novel cross-linked cytotoxic agents, pyrrolobenzo-diazepine dimer (PBD) derivatives, and their conjugates to a cell-binding molecule, a method for preparation of the conjugates and the therapeutic use of the conjugates.