摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

正己烷 | 110-54-3

中文名称
正己烷
中文别名
——
英文名称
hexane
英文别名
›hexane;n-hexane
正己烷化学式
CAS
110-54-3
化学式
C6H14
mdl
——
分子量
86.1772
InChiKey
VLKZOEOYAKHREP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    -95 °C
  • 沸点:
    68.95 °C(lit.)
  • 密度:
    0.659 g/mL at 25 °C(lit.)
  • 蒸气密度:
    3.5 (vs air)
  • 闪点:
    30 °F
  • 溶解度:
    极易溶于乙醇、乙醚和氯仿。
  • 最大波长(λmax):
    λ: 200 nm Amax: ≤0.70λ: 225 nm Amax: ≤0.10λ: 250 nm Amax: ≤0.01
  • 介电常数:
    2.0(-90℃)
  • 暴露限值:
    TLV-TWA 50 ppm (~175 mg/m3) (ACGIH), 500 ppm (~1750 mg/m3) (OSHA); IDLH 5000 ppm (NIOSH).
  • LogP:
    4 at 20℃ and pH7
  • 物理描述:
    N-hexane is a clear colorless liquids with a petroleum-like odor. Flash points -9°F. Less dense than water and insoluble in water. Vapors heavier than air. Used as a solvent, paint thinner, and chemical reaction medium.
  • 颜色/状态:
    Liquid
  • 气味:
    Gasoline-like odor
  • 蒸汽密度:
    2.97 (NTP, 1992) (Relative to Air)
  • 蒸汽压力:
    153 mm Hg at 25 °C
  • 大气OH速率常数:
    5.61e-12 cm3/molecule*sec
  • 自燃温度:
    437 °F (225 °C)
  • 分解:
    When heated to decomposition it emits acrid smoke and fumes.
  • 粘度:
    3.26X10-4 Pa-s at 20 °C
  • 燃烧热:
    4163.2 kJ/mol
  • 汽化热:
    31.56 kJ/mol at 25 °C
  • 表面张力:
    17.89 mN/m at 25 °C
  • 电离电位:
    10.18 eV
  • 气味阈值:
    0.0064 mg/l
  • 折光率:
    Index of refraction: 1.3727 at 25 °C
  • 相对蒸发率:
    0.377 cP at 15 °C
  • 保留指数:
    600
  • 稳定性/保质期:
    1. 稳定性:稳定。

    2. 禁配物:强氧化剂、强酸、强碱、卤素。

    3. 聚合危害:不聚合。

计算性质

  • 辛醇/水分配系数(LogP):
    3.9
  • 重原子数:
    6
  • 可旋转键数:
    3
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

代谢
休息、25瓦和50瓦(工作12小时后休息12小时)不同平的体力活动被模拟,以评估工作负荷对推荐生物暴露指标的影响:...在班次结束时,工作周结束时,非解(未解)的2,5-己二酮正己烷的一种代谢物)的平。...预测50 ppm的尿中2,5-己二酮在50瓦时的浓度为1.07毫克/升,在休息时为0.92毫克/升(增加16%)。...
Different levels of physical activity, namely, rest, 25 W, and 50 W (for 12 hr followed by 12 hr at rest) were simulated to assess the impact of work load on the recommended biological exposure indices: ...free (nonhydrolyzed) 2,5-hexanedione (a metabolite of n-hexane) at the end of the shift at the end of the workweek. ... Urinary 2,5-hexanedione predicted for 50 ppm was 1.07 mg/L at 50 W and 0.92 mg/L at rest (+16%). ...
来源:Hazardous Substances Data Bank (HSDB)
代谢
苯巴比妥预处理诱导n-己烷的2-和3-羟基化增加六倍;3,4-苯并抑制2-羟基化并刺激3-羟基化。
Phenobarbital pre-treatment induces 2- and 3-hydroxylation /of n-hexane/ six-fold; 3,4-benzopyrene suppresses 2- and stimulates 3-hydroxylation.
来源:Hazardous Substances Data Bank (HSDB)
代谢
大鼠的主要尿液代谢物是1-己醇
The major urinary metabolite in rat is 1-hexanol.
来源:Hazardous Substances Data Bank (HSDB)
代谢
2,5-己二酮是这种以及其他6碳化合物的主要代谢物...
...2,5-Hexanedione is principal metabolite of this and other 6-carbon compounds... .
来源:Hazardous Substances Data Bank (HSDB)
代谢
己烷有已知的人类代谢物,包括己醇
Hexane has known human metabolites that include Hexanol.
来源:NORMAN Suspect List Exchange
毒理性
  • 毒性总结
识别:正己烷是一种直链饱和烃,从某些石油馏分经过多种热裂解或催化裂解步骤后获得。商用己烷可能含有20%-85%的正己烷和各种比例的己烷异构体,包括2-甲基戊烷3-甲基戊烷、2,3-二甲基丁烯环戊烷环己烷以及少量的戊烷庚烷异构体、丙酮甲基乙基酮二氯甲烷三氯乙烯。可能存在微量的苯。正己烷是一种无色液体,其在中的溶解度较低。它能与酒精氯仿和醚混溶。主要用途包括:在鞋厂作为橡胶和粘合剂的溶剂;提取大豆油、蓖麻籽油和亚麻籽油。它还用于制药和化妆品行业,并作为纺织品、家具和皮革产品的清洁剂。正己烷还用于:测定矿物的折射率、温度计的填充物和变性剂。 人类暴露:目标器官包括:中枢神经系统、周围神经系统、呼吸系统、心脏、皮肤和眼睛。摄入后可能导致化学性肺炎,并吸入肺部。急性暴露于高浓度正己烷可能导致中枢神经系统抑制、抽搐、昏迷和死亡。吸入正己烷通常会引起眼睛、鼻子、喉咙和呼吸道的刺激,停止暴露后这些症状会迅速逆转。如果摄入或吸入与其他可能增强效果的烃类物质相关联,症状会更加严重。外源性儿茶酚胺可能在敏感的心肌中诱发致命的室性心律失常。急性暴露于高浓度正己烷可能导致咳嗽、喘息、带血泡沫痰、头痛、眩晕、心动过速和发热。可能引起胃肠道症状。呼吸系统:呼吸缓慢而浅;吸入正己烷可能导致肺肿和化学性肺炎。心血管系统:心动过速和室性心律失常。中枢神经系统:眩晕、头晕、中枢神经系统抑制综合征。在重度暴露下可能导致昏迷。周围神经系统:慢性暴露可能导致重要的周围神经病(运动感觉)和中枢神经系统异常。胃肠道:恶心、呕吐和厌食。成年人可能在工作场所或自杀尝试时暴露。吸胶正己烷的嗅吸将个人置于风险之中。儿童可能会意外摄入。使用该溶剂进行提取程序的实验室工作人员、化学家和药剂师可能会暴露。在工厂,粘合剂和胶行业的员工以及印刷和绘画职业的人员。正己烷通过吸入、摄入或皮肤表面应用而被吸收。在人类志愿者中,大约28%吸入的正己烷被肺部吸收。肺泡保留量约为吸入剂量的25%,最终吸收率为15%-17%,与总的呼吸道摄取量相关。肥胖个体的肺泡摄取量更大。尽管在体育锻炼期间肺泡摄取率降低,但由于肺通气率提高,正己烷的总摄取量略有增加。工业工人暴露于商用己烷的正己烷浓度与血液浓度相关。它通过胃肠道吸收较差。皮肤吸收非常缓慢。吸入或经皮暴露后不到1小时血液中达到峰值。正己烷对高脂质含量组织的亲和力很大,并且迅速代谢为羟基化合物,然后转化为2,5-己二酮。最近暴露的工人呼出正己烷的消除是双相的。快相和慢相的中位半衰期分别为11分钟和99分钟。在没有保护装置的情况下,每天大约暴露7小时的工人尿液中发现了以下代谢物:2-己醇2-甲基-2-戊醇3-甲基-2-戊醇环己醇环己烷和三乙醇。在暴露于高达200 ppm浓度的人类中,稳态血液平与剂量相关;即使在1 ppm的暴露下也会发生积累。 动物研究:在细胞色素P-450的氧化代谢的第一步,正己烷分子的碳1、2、3被羟基化,并在所有动物物种中以不同比例形成己醇正己烷通过肝脏的混合功能氧化酶系统代谢,形成与葡萄糖醛酸结合的醇或转化为一氧化碳1-己醇和3-己醛是毒性较低的代谢物。前者被氧化为己酸,然后经历通常的脂质代谢。在尿液中检测到2,5-己二酮。短期暴露后,大鼠肺表面活性物质的量和组成发生了重要变化。暴露于不同浓度己烷的大鼠肺部显示出对肺泡细胞的直接毒性作用;脂肪变性,2型肺泡细胞中的肺泡体变化和细胞脱落的增加。在暴露61天后,大鼠的生精小管严重萎缩,免疫反应性生殖细胞系中神经生长因子的丢失。在暴露后的一些动物中发现了永久的睾丸损伤,生殖细胞系的总损失持续到暴露后14个月。同时给予正己烷甲苯或二甲苯并未引起生殖细胞系的改变或睾丸萎缩。在离体灌注兔心中评估了正己烷和2,
IDENTIFICATION: n-Hexane is a straight chain saturated hydrocarbon obtained from certain petroleum fractions after various thermal or catalytic cracking steps. Commercial hexane may contain from 20%-85& n-Hexane and various amounts of hexane isomer, 2-methylpentane, 3-methylpentane, 2-3-dimethylbutene, cyclopentane, cyclohexane and small quantities of pentane and heptane isomers, acetone, methyl ethyl ketone, dichloromethane and trichloroethylene. Trace amounts of benzene may be present. N-Hexane is a colorless liquid and solubility in water is low. It is miscible with alcohol, chloroform and ether. Main uses are: rubber and adhesive solvent in shoe factories; extraction of soybean oil, callous seed oil and flaxseed oil. It is used in the pharmaceutical and cosmetic industries and is a cleaning agent for textiles, furniture and leather products. N-Hexane is also used for: determination of the refractive index of minerals, filling for thermometers and denaturant. HUMAN EXPOSURE: The target organs are: central nervous system and peripheral nervous system, respiratory system, heart, skin and eyes. Chemical pneumonia can occur after ingestion and and aspiration to the lungs. CNS depression, convulsions, coma and death may follow acute exposures to large concentrations. Inhalation of n-hexane usually causes eye, nose, throat and respiratory irritation, which are rapidly reversible when exposure is discontinued. Symptoms are more severe is ingestion or inhalation are associated with exposure to other hydrocarbons which may potentiate the effects. Exogenous catecholamines may precipitate a fatal ventricular arrhythmia in the sensitized myocardium. Acute exposure to considerable concentrations of n-hexane may cause cough, wheezing, bloody frothy sputum, headache, dizziness, tachycardia and fever. Gastrointestinal symptoms may result. Respiratory system: slow and shallow respiration; aspiration of n-hexane may cause pulmonary edema and chemical pneumonia. Cardiovascular system: tachycardia and ventricular dysrhythmia. Central nervous system: vertigo, giddiness, CNS depression syndrome. In heavy exposures unconsciousness may result. Peripheral nervous system: chronic exposure may produce important peripheral neuropathy (motor sensory) and CNS abnormalities. Gastrointestinal tract: nausea, vomiting and anorexia. Adults may be exposed in the workplace or in case of suicide attempts. Glue sniffing or n-hexane sniffing puts individuals at risk. There is a potential for accidental ingestion may occur in children. Laboratory workers which use the solvent for extraction procedures, chemists and pharmacists may be exposed. In the factory, glues and adhesives industry employees and those in printing and painting occupations. N-Hexane is absorbed following inhalation, ingestion or by topical application to the skin. In human volunteers about 28% of inhaled n-Hexane was taken up by the lungs. Alveolar retention is about 25% of the inhaled dose of n-hexane and the final absorption is 15%-17% in relation to the total respiratory uptake. Alveolar uptake was greater in obese individuals. Although the alveolar uptake rate decreased during physical exercise, the total uptake of n-hexane increased slightly as a result of the higher lung ventilation rate. Concentrations of n-hexane correlated with blood concentrations in industrial workers exposed to commercial hexane. It is poorly absorbed by the gastrointestinal system. Dermal absorption is very slow. Peak blood levels occur in less than 1 hour following inhalation or percutaneous exposure. N-Hexane has great affinity for high lipid content tissues and is rapidly metabolized to hydroxylated compounds before being converted to 2,5-hexanedione. The respiratory elimination of n-hexane in recently exposed workers was biphasic. The median half-lives of the fast and slow phases were 11minutes and 99 minutes. Workers exposed to n-hexane for about 7 hours/day without protective devices had the following metabolites in the urine: 2-hexanol, 2-methyl-2-pentanol, 3-methyl-2-pentanol, cyclohexanol, cyclohexane and trichloroethanol. In humans exposed to concentrations of up to 200 ppm, steady state blood levels were dose dependent; accumulation occurred in humans exposed to as little as 1 ppm. ANIMAL STUDIES: At the first step of oxidative metabolism by cytochrome p-450, the carbons 1,2,3 of n-hexane molecule are hydroxylated and form hexanols in different proportions in all species of animals. N-Hexane is metabolized by mixed function oxidase system in the liver forming alcohols which are conjugated to glucuronic acid or converted to carbon monoxide. 1-Hexanol and 3-hexonal are less toxic metabolites. The former is oxidized to hexanoic acid which undergoes the usual lipid metabolism. 2,5-Hexanedione was detected in urine. In rats exposed to n-hexane, important alterations in the quantity and composition of pulmonary surfactant in rats after short term exposure. The lungs of rats exposed to hexane at different concentrations showed a direct toxic effect on pneumocytes; fatty degeneration, change of alveolar bodies in type 2 pneumocytes and increased detachment of cells. Severe atrophy involving the seminiferous tubules with loss of the nerve growth factor in immunoreactive germ cell line of rats after 61 days of exposure was noted. Permanent testicular damage was found in some animals which had a total loss of the germ cell line lasting up to 14 months after the post exposure period. Simultaneous administration of n-hexane with toluene or xylene did not cause germ cell line alterations or testicular atrophy. In vitro toxicity of n-hexane and 2,5-hexanedione has been evaluated in the isolated perfused rabbit heart. The force of cardiac contraction was significantly reduced following 1 hour of perfusion with n-hexane or 2,5-hexanedione. Spinal neuron cell cultures exposed to n-hexane and butanone developed the neural swelling faster than when exposed to n-hexane. Animal tests have been negative for teratogenic effects. In pregnant rats showed n-hexane blood concentrations in the fetus equal to that found in maternal blood. Isopropanol enhances the induction of n-hexane metabolizing enzymes and increases the 2-hexanol concentrations in the liver and kidney. Methyl isobutyl ketone mixed with n-hexane significantly increased aniline hydroxylase and cytochrome P450 activity in the liver of exposed hens.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
己烷的毒性是由其神经毒素代谢物2,5-己二酮引起的。它通过导致轴突肿胀和变性来损害中枢和周围神经系统。2,5-己二酮还会与轴突细胞骨架蛋白中的赖酸侧链基团反应形成吡咯。这导致神经丝交联和功能丧失。
Hexane's toxicity is caused by it neurotoxic metabolite, 2,5-hexanedione. It damages the central and peripheral nervous system by causing axonal swelling and degeneration. 2,5-Hexanedione also reacts with lysine side-chain amino groups in axonal cytoskeletal proteins to form pyrroles. This results in neurofilament cross-linking and loss of function. (L175)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌物分类
己烷存在于汽油中,对人类可能具有致癌性(2B组)。
Hexane is found in gasoline, which is possibly carcinogenic to humans (Group 2B). (L135)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 健康影响
己烷主要影响神经系统。它会导致周围神经系统(最终是中枢神经系统)的退化,从神经轴突的损伤开始。接触己烷还可能损害肺和生殖系统。
Hexane mainly affects the nervous system. It causes degeneration of the peripheral nervous system (and eventually the central nervous system), starting with damage to the nerve axons. Exposure to hexane may also damage the lungs and reproductive system. (L977, L978)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 暴露途径
该物质可以通过吸入其蒸汽和摄入进入人体。
The substance can be absorbed into the body by inhalation of its vapour and by ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
吸收、分配和排泄
己烷通过肺部吸收,通过完整皮肤吸收相对较差。
Hexane is absorbed through the lungs and relatively poorly absorbed through the intact skin.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
组织中的积累取决于这些组织中的脂质含量。正己烷在肝脏中被氧化。通过肺和肾脏排泄。... 正己烷的排泄与剂量有关。
Accumulation in the tissues depends on lipid content in these tissues. n-/Hexane/ is oxidized in the liver. Excretion occurs via the lungs and kidneys. ... Excretion of /hexane/ is related to dose.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
大鼠和人体内吸入正己烷的药代动力学进行了比较。在大鼠中,代谢是可饱和的。在300 ppm以下,代谢速率与大气中的浓度成正比,达到47 umol/(小时X公斤)。只有17%的正己烷未经变化就被呼出。在300 ppm以上,体内的正己烷量随着大气浓度的增加而增加,从1.6增加到极限值9.6,这对应于正己烷生物体与大气之间的热力学分布系数。在3000 ppm以下,代谢速率增加到245 umol/(小时X公斤);在7000 ppm(285 umol/(小时X公斤))以下,只发现了缓慢的进一步增加。在人体中,正己烷的稳态浓度约为1 ppm。代谢清除率为132 L/小时,正己烷生物体内积累到2.3倍。计算出的热力学分布系数为12。体内20%的正己烷未经变化就被呼出。在低浓度下,正己烷的代谢速率在大鼠和人中都受到运输到酶系统的限制。在这种情况下,正己烷的代谢速率不应受到诱导正己烷代谢酶系统的外来化合物的影响。
The pharmacokinetics of inhaled n-hexane in rat and man were compared. In the rat metabolism was saturable. Up to 300 ppm, the metabolic rate was directly proportional to the concentration in the atmosphere, reaching 47 umol/(hr X kg). Only 17% of n-hexane was exhaled unchanged. Above 300 ppm, the amount of n-hexane in the body rose with increasing atmospheric concentrations from 1.6 up to a limiting value of 9.6, which corresponded to the thermodynamic distribution coefficient of n-hexane between the organism and the atmosphere. Up to 3000 ppm, the rate of metabolism increased to 245 umol/(hr X kg); only a slow further increase was found up to 7000 ppm (285 umol/(hr X kg). In man the steady-state concentrations of n-hexane were about 1 ppm. The metabolic clearance was 132 1/hr, and n-hexane accumulated to a factor of 2.3 in the organism. The thermodynamic distribution coefficient was calculated to be 12. Twenty per cent of n-hexane in the body was exhaled unchanged. At low concentrations the rate of metabolism of n-hexane is limited in both species by transport to the enzyme system. Under these conditions the rate of metabolism of n-hexane should not be influenced by xenobiotics which induce the n-hexane metabolizing enzyme system.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
... 雄性Fischer 344大鼠暴露于500、1000、3000或10000 ppm (14)C-正己烷6小时,并在暴露后72小时内跟踪放射性物质的消除。放射性的处置与剂量相关,随着暴露浓度的增加,分别有12%、24%、38%和62%的获得体内负担通过肺部以正己烷形式排出。相比之下,随着正己烷浓度的增加,体内放射性负担的38%、31%、27%和18%以呼出的(14)CO2形式恢复,35%、40%、31%和18%在尿液中恢复。暴露72小时后残留在组织和尸体中的放射性物质分别占各自暴露体内负担的6.1%、8.8%、7.4%和5.4%。放射性物质的剂量依赖性消除部分原因是正己烷代谢的抑制,这反映在10,000 ppm暴露与3000 ppm暴露相比,总14 和尿中14C排泄量减少。
... Male Fischer 344 rats were exposed to 500, 1000, 3000 or 10,000 ppm (14)C-n-hexane for 6 hr and the elimination of radioactivity followed for 72 hr after exposure. The disposition of radioactivity was dose-dependent, with 12, 24, 38 and 62% of the acquired body burden excreted as n-hexane by the lung with increasing exposure concentration. In contrast, 38, 31, 27 and 18% of the body burden of radioactivity was recovered as expired (14)CO2 and 35, 40, 31 and 18% was recovered in the urine with increasing n-hexane concentration. Radioactivity remaining in the tissues and carcass 72 hr after exposure represented 6.1, 8.8, 7.4 and 5.4% of the body burden for the respective exposures. The dose-dependent elimination of radioactivity was apparently due in part to an inhibition of n-hexane metabolism, reflected by a decrease in total 14CO2 and urinary 14C excretion after 10,000 ppm exposure compared to the 3000 ppm exposure.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 职业暴露等级:
    A
  • 职业暴露限值:
    TWA: 50 ppm (180 mg/m3)
  • TSCA:
    Yes
  • 危险等级:
    3
  • 立即威胁生命和健康浓度:
    1,100 ppm [10% LEL]
  • 危险品标志:
    F
  • 安全说明:
    S16,S29,S33,S36/37,S61,S62,S9
  • 危险类别码:
    R67,R51/53,R38,R11,R48/20,R62,R65
  • WGK Germany:
    3
  • 海关编码:
    2901100000
  • 危险品运输编号:
    UN 1208
  • 危险类别:
    3
  • RTECS号:
    MN9275000
  • 包装等级:
    II
  • 危险标志:
    GHS02,GHS07,GHS08,GHS09
  • 危险性描述:
    H225,H304,H315,H336,H361f,H373,H411
  • 危险性防范说明:
    P210,P260,P280,P301 + P310,P370 + P378,P403 + P235

SDS

SDS:d0b170682af1df02fd02b9cf81ad810f
查看
国标编号: 31005
CAS: 110-54-3
中文名称: 正己烷
英文名称: n-hexane;Hexyl hydride
别 名: 己烷
分子式: C 6 H 14 ;CH 3 (CH 2 ) 4 CH 3
分子量: 86.17
熔 点: -95.6℃ 沸点:68.7℃
密 度: 相对密度(=1)0.66;
蒸汽压: -25.5℃(蒸汽压:13.33kPa/15.8℃)
溶解性: 不溶于,溶于乙醇乙醚等多数有机溶剂
稳定性: 稳定
外观与性状: 无色液体,有微弱的特殊气味
危险标记: 7(低闪点易燃液体)
用 途: 用于有机合成,用作溶剂、化学试剂、涂料稀释剂、聚合反应的介质等

2.对环境的影响:
一、健康危害

侵入途径:吸入、食入、经皮吸收。
健康危害:本品有麻醉和刺激作用。长期接触可致周围神经炎。
急性中毒:吸入高浓度本品出现头痛、头晕、恶心、共济失调等,重者引起神志丧失甚至死亡。对眼和上呼吸道有刺激性。
慢性中毒:长期接触出现头痛、头晕、乏力、胃纳减退;其后四肢远端逐渐发展成感觉异常,麻木,触、痛、震动和位置等感觉减退,尤以下肢为甚,上肢较少受累。进一步发展为下肢无力,肌肉疼痛,肌肉萎缩及运动障碍。神经-肌电图检查示感神经及运动神经传导速度减慢。

二、毒理学资料及环境行为

毒性:属低毒类。
急性毒性:LD5028710mg/kg(大鼠经口);人吸入12.5g/m3,轻度中毒、头痛、恶心、眼和呼吸刺激症状。
亚急性和慢性毒性:大鼠吸入2.76g/m3/天,143天,夜间活动减少,网状内皮系统轻度异常反应,末梢神经有髓鞘退行性变,轴突轻度变化腓肠肌肌纤维轻度萎缩。

危险特性:极易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热极易燃烧爆炸。与氧化剂接触发生强烈反应,甚至引起燃烧。在火场中,受热的容器有爆炸危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。
燃烧(分解)产物:一氧化碳二氧化碳


3.现场应急监测方法:
气体检测管法
气体速测管(北京劳保所产品、德国德尔格公司产品)


4.实验室监测方法:
气相色谱法《食品中添加剂的分析方法》马家骧等译
气相色谱法《空气中有害物质的测定方法》(第二版),杭士平主编


5.环境标准:
前苏联 车间空气中有害物质的最高容许浓度 300mg/m3
前苏联(1978)环境空气中最高容许浓度 60mg/m3(一次值)


6.应急处理处置方法:
一、泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。防止进入下道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

二、防护措施

呼吸系统防护:空气中浓度超标时,佩戴自吸过滤式防毒面具(半面罩)。
眼睛防护:必要时,戴化学安全防护眼镜。
身体防护:穿防静电工作服。
手防护:戴防苯耐油手套。
其它:工作现场严禁吸烟。避免长期反复接触。

三、急救措施

皮肤接触:脱去被污染的衣着,用肥皂和清彻底冲洗皮肤。
眼睛接触:提起眼睑,用流动清或生理盐冲洗。就医。
吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
食入:饮足量温,催吐,就医。

灭火方法:喷冷却容器,可能的话将容器从火场移至空旷处。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:泡沫、干粉、二氧化碳、砂土。用灭火无效。





制备方法与用途

概述

正己烷,别名己烷,分子式C6H14,分子量为86.2。它属于直链饱和脂肪烃类,由原油裂解及分馏获得。正己烷是无色、具有汽油味的液体,熔点为95℃,沸点为68.95℃,蒸汽密度为2.97(空气=1),几乎不溶于,易溶于氯仿乙醚酮类等有机溶剂。它主要用于萃取、有机合成以及作为溶剂使用。

使用限量

正己烷的ADI以GMP为限(FAO/WHO,2001)。

生产方法

目前工业生产主要从重整装置的抽余油中分离正己烷。将抽余油精馏分离,除去轻组分和重组分,得到含正己烷60%-80%的馏分。采用双塔连续精馏,再经0501型催化剂加氢,除去苯等不饱和烃,最终获得合格正己烷

化学性质 主要用途
  1. 萃取与溶剂:用于植物油提取及各类溶剂。
  2. 有机合成:在电子行业清洗中应用广泛;作为制药工业中的萃取剂;用作食用植物油的提取剂。
生产方法与物理化学性质
  • 从石油馏分中分馏获得
  • 易燃液体,低毒性
  • 口服对大鼠LD50:28710毫克/公斤,吸入对小鼠LCL0: 120000毫克/立方米
  • 眼刺激数据:兔子眼中滴入10毫克轻度刺激
安全与储存运输
  • 库房应通风、低温干燥存放,并远离氧化剂和酸类。
  • 灭火剂:干粉、二氧化碳、泡沫。

正己烷在使用过程中需严格遵守安全操作规程,以防发生火灾等危险情况。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    描述:
    正己烷 在 platinum on activated charcoal 作用下, 生成 甲基环戊烷
    参考文献:
    名称:
    Intertemporal Tax Discontinuities
    摘要:
    我们将时际税收不连续性(ITD)定义为在某一时点实现的收益与在另一时点实现的收益适用不同税率的情况。我们研究了 ITD 对公司业绩披露时市场行为的影响,假设所有交易公司股票的投资者都要纳税。本文的研究结果表明,相对于不存在 ITD 的经济体,ITD 可能会抑制披露时的交易量并放大价格变化。
    DOI:
    10.1111/1475-679x.00044
  • 作为产物:
    描述:
    参考文献:
    名称:
    The reactions of alkyl radicals. Part 1.—n-Propyl radicals from the photolysis of n-butyraldehyde
    摘要:
    DOI:
    10.1039/tf9595500572
  • 作为试剂:
    参考文献:
    名称:
    Oxidative decyanation of secondary nitriles to ketones
    摘要:
    DOI:
    10.1021/jo00170a043
点击查看最新优质反应信息

文献信息

  • Insecticidal and acaricidal diarylpyrrolecarbonitrile and
    申请人:American Cyanamid Company
    公开号:US05180734A1
    公开(公告)日:1993-01-19
    This invention relates to new diarylpyrrolecarbonitrile and new diarylnitropyrrole compounds. It also relates to the use of said compounds as insecticidal and acaricidal agents and to a method of protecting plants, particularly crop plants, from attack by insects and acarina by application of a new diarylpyrrolecarbonitrile or diarylnitropyrrole to said plants or to the locus in which they are growing.
    这项发明涉及新的二芳基吡咯烯碳腈和新的二芳基硝基吡咯烯化合物。它还涉及将这些化合物用作杀虫和杀螨剂的用途,以及通过向植物,特别是作物植物施用新的二芳基吡咯烯碳腈或二芳基硝基吡咯烯来保护植物免受昆虫和螨类侵害的方法。
  • Silica–Dendrimer Core–Shell Microspheres with Encapsulated Ultrasmall Palladium Nanoparticles: Efficient and Easily Recyclable Heterogeneous Nanocatalysts
    作者:Ankush V. Biradar、Archana A. Biradar、Tewodros Asefa
    DOI:10.1021/la203066d
    日期:2011.12.6
    We report the synthesis, characterization, and catalytic properties of novel monodisperse SiO2@Pd-PAMAM core–shell microspheres containing SiO2 microsphere cores and PAMAM dendrimer-encapsulated Pd nanoparticle (Pd-PAMAM) shells. First, SiO2 microspheres, which were prepared by the Stöber method, were functionalized with vinyl groups by grafting their surfaces with vinyltriethoxysilane (VTS). The vinyl
    我们报道了新型的单分散SiO 2 @ Pd-PAMAM核-壳微球的合成,表征和催化性能,其中SiO 2 @ Pd-PAMAM核-壳微球包含SiO 2微球核和PAMAM树枝状聚合物包裹的Pd纳米粒子(Pd-PAMAM)壳。首先,将通过Stöber方法制得的SiO 2微球通过乙烯基三乙氧基硅烷(VTS)接枝其表面而被乙烯基官能化。然后将乙烯基基团通过使用转化为环氧化物过氧苯甲酸。用胺封端的G4聚(酰胺基胺)(PAMAM)树状聚合物处理后,SiO 2负载的环氧化物发生开环反应,得到SiO 2@PAMAM核-壳微球。通过使Pd(II)离子与树枝状聚合物核心中的胺基络合,然后用NaBH 4将其还原为Pd(0),来合成SiO 2负载的PAMAM树状聚合物核心中的Pd纳米粒子。这产生了SiO 2 @ Pd-PAMAM核-壳微球。通过跟踪FTIR光谱,元素分析和热重曲线上的重量损失,可以监测材料中不同
  • Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni‐Core–Shell Catalyst
    作者:Jie Gao、Rui Ma、Lu Feng、Yuefeng Liu、Ralf Jackstell、Rajenahally V. Jagadeesh、Matthias Beller
    DOI:10.1002/anie.202105492
    日期:2021.8.16
    selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which
    提出了各种烯烃的选择性氢化和化的通用方案。这些反应成功的关键是使用特定的-石墨壳基核壳结构催化剂,该催化剂可以通过浸渍碳上的硝酸镍并随后在气下于 450 °C 下煅烧来方便地制备。应用这种纳米结构催化剂,具有工业和商业重要性的末端烯烃和内部烯烃在环境条件下(室温,使用1巴氢气或1巴)进行选择性氢化和化,从而获得相应的烷烃。标记烷烃的收率良好至极好。通过克级反应以及高效的催化剂回收实验证明了这种基加氢方案的合成效用和实用性。
  • Hydrogenation of arenes, nitroarenes, and alkenes catalyzed by rhodium nanoparticles supported on natural nanozeolite clinoptilolite
    作者:Seyed Meysam Baghbanian、Maryam Farhang、Seyed Mohammad Vahdat、Mahmood Tajbakhsh
    DOI:10.1016/j.molcata.2015.06.029
    日期:2015.10
    Nanozeolite clinoptilolite supported rhodium nanoparticles (Rh/NZ-CP) has been prepared and characterized by a variety of techniques, including XRD, BET, TEM, EDX, ICP-OES and XPS analysis. This nanomaterial contains 2 wt% Rh in the range of 5–20 nm metallic nanoparticles distributed on nanozeolite. The catalytic performance of Rh/NZ-CP was evaluated by the hydrogenation of arenes, nitroarenes, and alkenes under
    纳米沸石斜发沸石负载的纳米颗粒(Rh / NZ-CP )已通过多种技术进行了制备和表征,包括XRD,BET,TEM,EDX,ICP-OES和XPS分析。这种纳米材料包含2 wt%的Rh,分布在5-20 nm范围内的属纳米颗粒分布在纳米沸石上。Rh / NZ-CP的催化性能通过在中等反应条件下氢化芳烃,硝基芳烃和烯烃来评估。所制备的纳米催化剂可以容易地回收并重复使用多次,而活性和选择性没有显着降低。高催化活性,热稳定性和可重复使用性,简单的回收和生态友好的性质使本催化剂成为独特的催化体系,在绿色化学中特别有吸引力。
  • Chemoselective Hydrogenation of Olefins Using a Nanostructured Nickel Catalyst
    作者:Mara Klarner、Sandra Bieger、Markus Drechsler、Rhett Kempe
    DOI:10.1002/zaac.202100124
    日期:2021.11.25
    pharmaceutical industry. Here, we report on a nanostructured nickel catalyst that enables the selective hydrogenation of purely aliphatic and functionalized olefins under mild conditions. The earth-abundant metal catalyst allows the selective hydrogenation of sterically protected olefins and further tolerates functional groups such as carbonyls, esters, ethers and nitriles. The characterization of our
    官能化烯烃的选择性加氢在化学和制药工业中具有重要意义。在这里,我们报告了一种纳米结构的催化剂,该催化剂能够在温和条件下对纯脂肪族和官能化烯烃进行选择性加氢。地球上丰富的属催化剂允许空间保护的烯烃的选择性氢化,并进一步耐受羰基、酯、醚和腈等官能团。我们催化剂的表征揭示了表面氧化金纳米颗粒的形成,该纳米颗粒由活性炭载体上的 N 掺杂碳层稳定。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台