摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

托莫西汀 | 83015-26-3

中文名称
托莫西汀
中文别名
(R)-N-甲基-3-(2-甲基苯氧基)苯丙胺;(R)-N-甲基-3-(2-甲基苯氧)-3-苯丙胺
英文名称
(R)-Tomoxetine
英文别名
tomoxetine;atomoxetine;(3R)-N-methyl-3-(2-methylphenoxy)-3-phenylpropan-1-amine
托莫西汀化学式
CAS
83015-26-3
化学式
C17H21NO
mdl
——
分子量
255.36
InChiKey
VHGCDTVCOLNTBX-QGZVFWFLSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    389.0±37.0 °C(Predicted)
  • 密度:
    1.023±0.06 g/cm3(Predicted)
  • 物理描述:
    Solid
  • 熔点:
    161-165 ºC
  • 溶解度:
    In water, 54.64 mg/L at 25 °C (est)
  • 蒸汽压力:
    1.31X10-5 mm Hg at 25 °C (est)
  • 解离常数:
    pKa = 9.80 (secondary amine) (est)
  • 碰撞截面:
    164.2 Ų [M+H]+ [CCS Type: TW, Method: Major Mix IMS/Tof Calibration Kit (Waters)]

计算性质

  • 辛醇/水分配系数(LogP):
    3.7
  • 重原子数:
    19
  • 可旋转键数:
    6
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.29
  • 拓扑面积:
    21.3
  • 氢给体数:
    1
  • 氢受体数:
    2

ADMET

代谢
阿托莫西汀主要通过细胞色素P450 2D6(CYP2D6)酶途径进行生物转化。CYP2D6途径活性降低的人(也称为弱代谢者或PMs)与正常活性的人(也称为广泛代谢者或EMs)相比,其阿托莫西汀的血浆浓度更高。对于PMs来说,阿托莫西汀在稳态下的AUC大约是EMs的10倍,Cmax大约是EMs的5倍。无论CYP2D6状态如何,形成的主要氧化代谢物是4-羟基-阿托莫西汀,它会迅速葡萄糖苷酸化。4-羟基阿托莫西汀作为去甲肾上腺素转运体的抑制剂与阿托莫西汀等效,但在血浆中的浓度要低得多(在EMs中为阿托莫西汀浓度的1%,在PMs中为阿托莫西汀浓度的0.1%)。在缺乏CYP2D6活性的个体中,4-羟基阿托莫西汀仍然是主要的代谢物,但它是由其他几种细胞色素P450酶形成的,且形成速度较慢。另一种次要代谢物,N-去甲基-阿托莫西汀,由CYP2C19和其他细胞色素P450酶形成,但其药理活性远低于阿托莫西汀,血浆浓度也较低(在EMs中为阿托莫西汀浓度的5%,在PMs中为阿托莫西汀浓度的45%)。
Atomoxetine undergoes biotransformation primarily through the cytochrome P450 2D6 (CYP2D6) enzymatic pathway. People with reduced activity in the CYP2D6 pathway (also known as poor metabolizers or PMs) have higher plasma concentrations of atomoxetine compared with people with normal activity (also known as extensive metabolizers, or EMs). For PMs, the AUC of atomoxetine at steady-state is approximately 10-fold higher and Cmax is about 5-fold greater than for EMs. The major oxidative metabolite formed regardless of CYP2D6 status is 4-hydroxy-atomoxetine, which is rapidly glucuronidated. 4-Hydroxyatomoxetine is equipotent to atomoxetine as an inhibitor of the norepinephrine transporter, but circulates in plasma at much lower concentrations (1% of atomoxetine concentration in EMs and 0.1% of atomoxetine concentration in PMs). In individuals that lack CYP2D6 activity, 4-hydroxyatomoxetine is still the primary metabolite, but is formed by several other cytochrome P450 enzymes and at a slower rate. Another minor metabolite, N-Desmethyl-atomoxetine is formed by CYP2C19 and other cytochrome P450 enzymes, but has much less pharmacological activity than atomoxetine and lower plasma concentrations (5% of atomoxetine concentration in EMs and 45% of atomoxetine concentration in PMs).
来源:DrugBank
代谢
托莫西汀主要通过CYP2D6酶途径代谢。在这一途径活性降低的人(PMs)与活性正常的人(EMs)相比,其托莫西汀的血浆浓度更高。对于PMs来说,托莫西汀的AUC(药时曲线下面积)大约是EMs的10倍,Css,max(最大稳态血药浓度)则是EMs的大约5倍。实验室检测可以用来识别CYP2D6 PMs。
Atomoxetine is metabolized primarily through the CYP2D6 enzymatic pathway. People with reduced activity in this pathway (PMs) have higher plasma concentrations of atomoxetine compared with people with normal activity (EMs). For PMs, AUC of atomoxetine is approximately 10-fold and Css, max is about 5-fold greater than EMs. Laboratory tests are available to identify CYP2D6 PMs.
来源:Hazardous Substances Data Bank (HSDB)
代谢
主要形成的氧化代谢物是4-羟基阿托莫西汀,无论CYP2D6状态如何,它都会被葡萄糖醛酸化。4-羟基阿托莫西汀作为去甲肾上腺素转运体的抑制剂,其效力与阿托莫西汀相当,但在血浆中的浓度要低得多(在广泛代谢者(EMs)中为阿托莫西汀浓度的1%,在PMs中为阿托莫西汀浓度的0.1%)。4-羟基阿托莫西汀主要由CYP2D6形成,但在PMs中,4-羟基阿托莫西汀的形成速度较慢,由其他几种细胞色素P450酶催化。N-去甲基阿托莫西汀由CYP2C19和其他细胞色素P450酶形成,但其药理活性比阿托莫西汀低得多,在血浆中的浓度也较低(在EMs中为阿托莫西汀浓度的5%,在PMs中为阿托莫西汀浓度的45%)。
The major oxidative metabolite formed, regardless of CYP2D6 status, is 4-hydroxyatomoxetine, which is glucuronidated. 4-Hydroxyatomoxetine is equipotent to atomoxetine as an inhibitor of the norepinephrine transporter but circulates in plasma at much lower concentrations (1% of atomoxetine concentration in extensive metabolizers (EMs) and 0.1% of atomoxetine concentration in PMs). 4-Hydroxyatomoxetine is primarily formed by CYP2D6, but in PMs, 4-hydroxyatomoxetine is formed at a slower rate by several other cytochrome P450 enzymes. N-Desmethylatomoxetine is formed by CYP2C19 and other cytochrome P450 enzymes, but has substantially less pharmacological activity compared with atomoxetine and circulates in plasma at lower concentrations (5% of atomoxetine concentration in EMs and 45% of atomoxetine concentration in poor metabolizers (PMs)).
来源:Hazardous Substances Data Bank (HSDB)
代谢
多态性细胞色素P450 2D6(CYP2D6)在盐酸阿托莫西汀((-)-N-甲基-γ-(2-甲基苯氧基)苯丙胺盐酸盐;LY139603)的药代动力学中的作用已经得到了证实,无论是在单次给药还是多次给药后。在这项研究中,评估了CYP2D6多态性对20毫克(14)C-阿托莫西汀在稳态条件下广泛代谢者(EM;n = 4)和不良代谢者(PM;n = 3)整体处置和代谢的影响。阿托莫西汀从胃肠道吸收良好,主要通过代谢清除,大部分放射性物质被排入尿液中。在EM受试者中,大部分放射性剂量在24小时内排出,而在PM受试者中,大部分剂量在72小时内排出。阿托莫西汀的生物转化在所有受试者中都是相似的,进行芳香环羟基化、苄基氧化和N-脱甲基化,没有CYP2D6表型特异性代谢物。阿托莫西汀的主要氧化代谢物是4-羟基阿托莫西汀,随后形成4-羟基阿托莫西汀-O-葡萄糖苷酸。由于缺乏CYP2D6活性,PM受试者(t(1/2) = 62小时)与EM受试者(t(1/2) = 18小时)相比,放射性物质的系统暴露时间延长。在EM受试者中,阿托莫西汀(t(1/2) = 5小时)和4-羟基阿托莫西汀-O-葡萄糖苷酸(t(1/2) = 7小时)是主要的循环物种,而在PM受试者中,阿托莫西汀(t(1/2) = 20小时)和N-去甲基阿托莫西汀(t(1/2) = 33小时)是主要的循环物种。尽管在代谢物的排泄和形成量上存在差异,但在EM和PM受试者之间观察到的最主要差异是阿托莫西汀转化为4-羟基阿托莫西汀的速度。
The role of the polymorphic cytochrome p450 2D6 (CYP2D6) in the pharmacokinetics of atomoxetine hydrochloride [(-)-N-methyl-gamma-(2-methylphenoxy)benzenepropanamine hydrochloride; LY139603] has been documented following both single and multiple doses of the drug. In this study, the influence of the CYP2D6 polymorphism on the overall disposition and metabolism of a 20-mg dose of (14)C-atomoxetine was evaluated in CYP2D6 extensive metabolizer (EM; n = 4) and poor metabolizer (PM; n = 3) subjects under steady-state conditions. Atomoxetine was well absorbed from the gastrointestinal tract and cleared primarily by metabolism with the preponderance of radioactivity being excreted into the urine. In EM subjects, the majority of the radioactive dose was excreted within 24 hr, whereas in PM subjects the majority of the dose was excreted by 72 hr. The biotransformation of atomoxetine was similar in all subjects undergoing aromatic ring hydroxylation, benzylic oxidation, and N-demethylation with no CYP2D6 phenotype-specific metabolites. The primary oxidative metabolite of atomoxetine was 4-hydroxyatomoxetine, which was subsequently conjugated forming 4-hydroxyatomoxetine-O-glucuronide. Due to the absence of CYP2D6 activity, the systemic exposure to radioactivity was prolonged in PM subjects (t(1/2) = 62 hr) compared with EM subjects (t(1/2) = 18 hr). In EM subjects, atomoxetine (t(1/2) = 5 hr) and 4-hydroxyatomoxetine-O-glucuronide (t(1/2) = 7 hr) were the principal circulating species, whereas atomoxetine (t(1/2) = 20 hr) and N-desmethylatomoxetine (t(1/2) = 33 hr) were the principal circulating species in PM subjects. Although differences were observed in the excretion and relative amounts of metabolites formed, the primary difference observed between EM and PM subjects was the rate at which atomoxetine was biotransformed to 4-hydroxyatomoxetine.
来源:Hazardous Substances Data Bank (HSDB)
代谢
阿托莫西汀主要作为4-羟基阿托莫西汀-O-葡萄糖苷酸形式排出,主要在尿液中(大于80%的剂量)以及较小程度上在粪便中(小于17%的剂量)。只有很小一部分的斯特拉塔剂量以未改变的阿托莫西汀形式排出(小于3%的剂量),这表明阿托莫西汀经历了广泛的生物转化。
Atomoxetine is excreted primarily as 4-hydroxyatomoxetine-O-glucuronide, mainly in the urine (greater than 80% of the dose) and to a lesser extent in the feces (less than 17% of the dose). Only a small fraction of the Strattera dose is excreted as unchanged atomoxetine (less than 3% of the dose), indicating extensive biotransformation.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
阿托莫西汀,作为斯特拉塔拉,用于治疗注意力缺陷/多动障碍(ADHD)。人类接触和毒性:阿托莫西汀在短期研究中增加了儿童或青少年ADHD患者自杀意念的风险。阿托莫西汀急性或慢性过量的症状包括胃肠道症状、嗜睡、眩晕、震颤、异常行为、多动、激动,以及与轻至中度交感神经系统激活一致的体征和症状(例如,心动过速、血压升高、瞳孔散大、口干)。较少见的是,有QT间期延长和精神变化,包括定向障碍和幻觉的报告。阿托莫西汀可能通过代谢特异反应或诱导自身免疫性肝炎引起临床上显著肝毒性。有报告称,涉及斯特拉塔拉和至少另一种药物的混合摄入过量的死亡事件。在具有结构性心脏病或其他严重心脏问题的儿童和成人中,有突发死亡、中风和心肌梗死的报告。动物研究:阿托莫西汀盐酸盐在动物中的中位致死口服剂量估计为25 mg/kg对猫,>37.5 mg/kg对狗,大鼠和小鼠为0.190 mg/kg。动物单次口服阿托莫西汀后毒性预示性体征包括瞳孔散大和瞳孔光反射减弱、粘液便、流涎、呕吐、共济失调、震颤、肌阵挛抽搐和惊厥。在成年大鼠和狗中进行了长达1年的慢性毒性研究。在口服剂量达到16 mg/kg/天的大狗或以时间加权平均剂量高达47 mg/kg/天的阿托莫西汀喂食的大鼠中,没有观察到主要靶器官毒性。这些剂量是成人最大推荐日口服剂量的4-5倍。在给予时间加权平均剂量>/= 14 mg/kg/天的雄性大鼠中,观察到轻度肝脏效应,表现为肝脏斑驳和苍白、相对肝脏重量增加、肝细胞空泡化和血清ALT值略有升高。在大狗中没有观察到肝脏效应。在大狗中观察到瞳孔散大、瞳孔光反射减弱、呕吐和震颤的临床体征,这些效应在大狗口服>/= 8 mg/kg/天时是最小的。在器官发生期间口服剂量高达100 mg/kg/天和150 mg/kg/天(分别为成人最大推荐日口服剂量的13倍)的兔子和大鼠中,没有产生与药物相关的致畸性或胎儿发育迟缓的证据。在大鼠繁殖研究中,观察到在母体饮食阿托莫西汀时间加权平均剂量为23 mg/kg/天或更高时,尤其是在出生后第一周,幼崽体重和存活率下降。阿托莫西汀盐酸盐在包括反向点突变试验(Ames试验)、体外小鼠淋巴瘤试验、中国仓鼠卵巢细胞染色体畸变试验、大鼠肝细胞非计划DNA合成试验和体内小鼠微核试验在内的一系列遗传毒性研究中呈阴性。然而,中国仓鼠卵巢细胞中具有双倍体染色体的细胞百分比略有增加,提示端粒重复(数字畸变)。在2年的饮食研究中,阿托莫西汀盐酸盐在大鼠和小鼠中以时间加权平均剂量高达47和458 mg/kg/天时,未表现出致癌性。
IDENTIFICATION AND USE: Atomoxetine, as Strattera, is indicated for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). HUMAN EXPOSURE AND TOXICITY: Atomoxetine increased the risk of suicidal ideation in short-term studies in children or adolescents with ADHD. Symptoms accompanying acute and chronic overdoses of atomoxetine include gastrointestinal symptoms, somnolence, dizziness, tremor, abnormal behavior, hyperactivity, agitation, and signs and symptoms consistent with mild to moderate sympathetic nervous system activation (e.g., tachycardia, blood pressure increased, mydriasis, dry mouth). Less commonly, there have been reports of QT prolongation and mental changes, including disorientation and hallucinations. Atomoxetine may cause clinically significant hepatotoxicity either by metabolic idiosyncrasy or by inducing autoimmune hepatitis. There have been fatalities reported involving a mixed ingestion overdose of Strattera and at least one other drug. Sudden deaths, stroke, and myocardial infarction have been reported in both children and adults with structural cardiac abnormalities or other serious heart problems. ANIMAL STUDIES: The median lethal oral dose of atomoxetine hydrochloride in animals was estimated to be 25 mg/kg for cats, >37.5 mg/kg for dogs, and 0.190 mg/kg in rats and mice. Premonitory signs of toxicity following single oral doses of atomoxetine in animals included mydriasis and reduced pupillary light reflex, mucoid stools, salivation, vomiting, ataxia, tremors, myoclonic jerking, and convulsions. Chronic toxicity studies of up to 1 year were conducted in adult rats and dogs. There was no major target organ toxicity observed in dogs given oral doses up to 16 mg/kg/day or in rats given atomoxetine in the diet at time-weighted average doses up to 47 mg/kg/day. These doses are 4-5 times the maximum recommended daily oral dose in adults. Mild hepatic effects, characterized by mottling and pallor of the liver, increased relative liver weights, hepatocellular vacuolation, and slightly increased serum ALT values, occurred in male rats given time weighted average doses >/= 14 mg/kg/day. No hepatic effects were observed in dogs. Clinical signs of mydriasis, reduced pupillary light reflex, emesis, and tremors were observed in dogs, and these effects were minimal in adult dogs given >/= 8 mg/kg/day. No evidence of drug-associated teratogenicity or retarded fetal development was produced in rabbits or rats administered atomoxetine hydrochloride throughout organogenesis at oral doses up to 100 mg/kg/day and 150 mg/kg/day (13 times the maximum recommended daily oral dose in adults). In a rat fertility study, decreased pup weight and survival was observed, predominantly during the first week postpartum following maternal dietary atomoxetine timeweighted average doses of 23 mg/kg/day or higher. Atomoxetine hydrochloride was negative in a battery of genotoxicity studies that included a reverse point mutation assay (Ames Test), an in vitro mouse lymphoma assay, a chromosomal aberration test in Chinese hamster ovary cells, an unscheduled DNA synthesis test in rat hepatocytes, and an in vivo micronucleus test in mice. However, there was a slight increase in the percentage of Chinese hamster ovary cells with diplochromosomes, suggesting endoreduplication (numerical aberration). Atomoxetine hydrochloride was not carcinogenic in rats and mice when given in the diet for 2 years at time-weighted average doses up to 47 and 458 mg/kg/day, respectively.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
阿托莫西汀在治疗注意缺陷多动障碍(ADHD)中的确切作用机制尚不清楚,但据认为与其对前突触去甲肾上腺素转运体的选择性抑制有关,这一点通过体外研究确定。阿托莫西汀对其他去甲肾上腺素受体或其他神经递质转运体或受体的亲和力似乎很小。
The precise mechanism by which atomoxetine produces its therapeutic effects in Attention-Deficit/Hyperactivity Disorder (ADHD) is unknown, but is thought to be related to selective inhibition of the pre-synaptic norepinephrine transporter, as determined through in-vitro studies. Atomoxetine appears to have minimal affinity for other noradrenergic receptors or for other neurotransmitter transporters or receptors.
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 肝毒性
阿托莫西汀与一小部分患者(约占0.5%)的血清转氨酶升高有关。更重要的是,有几份报告称阿托莫西汀导致了临床上明显的急性肝损伤。损伤的发生在开始用药后的3到12周内。血清酶升高的典型模式是肝细胞型,血清转氨酶水平显著升高(通常高于正常上限的20倍),临床表现类似于急性病毒性肝炎。大多数病例是自限性的,但有时会报告急性肝衰竭的病例,这些病例有时需要紧急肝移植。没有发现免疫过敏特征,但几名急性损伤的患者有抗核抗体,至少有一名患者具有类似自身免疫性肝炎的其他特征(具有典型的肝脏组织学和血清中高水平的免疫球蛋白)。
Atomoxetine has been linked to serum aminotransferase elevations in a small proportion of patients (~0.5%). More importantly, there have been several reports of clinically apparent acute liver injury due to atomoxetine. The onset of injury was within 3 to 12 weeks of starting the medication. The typical pattern of serum enzyme elevations was hepatocellular with marked increases in serum aminotransferase levels (often >20 times upper limit of normal) and clinical features that resembled acute viral hepatitis. Most cases have been self-limited, but instances of acute liver failure sometimes requiring emergency liver transplantation have been reported. Immunoallergic features were not found, but several patients with acute injury had antinuclear antibody and at least one patient had other features that resembled autoimmune hepatitis (with typical liver histology and high levels of immunoglobulins in serum).
来源:LiverTox
毒理性
  • 药物性肝损伤
盐酸阿托莫西汀
Compound:atomoxetine
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
药物性肝损伤标注:最令人关注的药物性肝损伤
DILI Annotation:Most-DILI-Concern
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
吸收、分配和排泄
  • 吸收
阿托莫西汀的药代动力学特性高度依赖于个体细胞色素P450 2D6的遗传多态性。有很大一部分人群(高达10%的白种人、2%的非洲血统人群和1%的亚洲人)对CYP2D6代谢药物的代谢能力较差(PMs)。这些个体在该途径中的活性降低,导致阿托莫西汀的曲线下面积(AUC)增加10倍,血浆峰浓度增加5倍,消除速度减慢(血浆半衰期为21.6小时),与CYP2D6活性正常的人群相比。阿托莫西汀口服给药后迅速吸收,广泛代谢者(EMs)的绝对生物利用度约为63%,而代谢不良者(PMs)的生物利用度为94%。平均最大血浆浓度(Cmax)在大约1到2小时后达到,最大浓度为350 ng/ml,AUC为2 mcg·h/ml。
The pharmacokinetic profile of atomoxetine is highly dependent on cytochrome P450 2D6 genetic polymorphisms of the individual. A large fraction of the population (up to 10% of Caucasians and 2% of people of African descent and 1% of Asians) are poor metabolizers (PMs) of CYP2D6 metabolized drugs. These individuals have reduced activity in this pathway resulting in 10-fold higher AUCs, 5-fold higher peak plasma concentrations, and slower elimination (plasma half-life of 21.6 hours) of atomoxetine compared with people with normal CYP2D6 activity. Atomoxetine is rapidly absorbed after oral administration, with absolute bioavailability of about 63% in extensive metabolizers (EMs) and 94% in poor metabolizers (PMs). Mean maximal plasma concentrations (Cmax) are reached approximately 1 to 2 hours after dosing with a maximal concentration of 350 ng/ml with an AUC of 2 mcg.h/ml.
来源:DrugBank
吸收、分配和排泄
  • 消除途径
阿托莫西汀主要作为4-羟基阿托莫西汀-O-葡萄糖苷酸形式排出,主要在尿液中(大于80%的剂量),其次在粪便中(小于17%的剂量)。只有很小一部分(小于3%)的阿托莫西汀剂量以未改变的阿托莫西汀形式排出,这表明阿托莫西汀经历了广泛的生物转化。
Atomoxetine is excreted primarily as 4-hydroxyatomoxetine-O-glucuronide, mainly in the urine (greater than 80% of the dose) and to a lesser extent in the feces (less than 17% of the dose). Only a small fraction (less than 3%) of the atomoxetine dose is excreted as unchanged atomoxetine, indicating extensive biotransformation.
来源:DrugBank
吸收、分配和排泄
  • 分布容积
口服阿托莫西汀的报道分布体积为1.6-2.6 L/kg。静脉注射阿托莫西汀的稳态分布体积大约为0.85 L/kg。
The reported volume of distribution of oral atomoxetine was 1.6-2.6 L/kg. The steady-state volume of distribution of intravenous atomoxetine was approximately 0.85 L/kg.
来源:DrugBank
吸收、分配和排泄
  • 清除
atomoxetine的清除率取决于个体CYP2D6基因的多态性,范围为0.27-0.67升/小时/千克。
The clearance rate of atomoxetine depends the CYP2D6 genetic polymorphisms of the individual and can range of 0.27-0.67 L.h/kg.
来源:DrugBank
吸收、分配和排泄
稳态分布容积(静脉给药):8.5 L/kg。阿托莫西汀主要分布到全身水分中;在正常化体重后,分布容积在患者体重范围内相似。
Steady-state volume of distribution (intravenous administration): 8.5 L/kg. Atomexetine distributes primarily into total body water; volume of distribution is similar across patient weight range after normalizing for body weight.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 安全说明:
    S22,S24/25
  • 海关编码:
    2922299090
  • 储存条件:
    -20°C,密闭保存,干燥存放

SDS

SDS:e850ab11ae26fb3c7a891cd06be9c27e
查看

制备方法与用途

根据提供的信息,我将总结并整理关于托莫西汀的几个关键点:

适应症与用途
  • 主要用于治疗儿童和青少年注意缺陷障碍(ADHD)。
  • 也可用于抑郁症患者。
用法用量
  • 儿童:初始剂量0.5mg/kg,每日分1次或2次服用;最大日剂量不超过140mg/天。
  • 成人及70kg以上儿童:初始剂量为40mg/d,可增至80mg/d至100mg/d。
不良反应
  • 常见的不良反应包括食欲下降、恶心、头痛、头晕等,多在服药初期消失。
  • 可能引起轻度血压升高和心率加快。
注意事项与禁忌证
  • 不能与其他单胺氧化酶抑制剂(MAOI)联用或在停药2周内使用。
  • 肝脏疾病患者需谨慎,并适当调整剂量;严重肝功能不全者避免使用。
  • 对药物成分过敏者禁用,闭角性青光眼、孕妇等特定人群禁用。
合并用药注意
  • 与CYP2D6抑制剂如氟西汀、帕罗西汀或奎尼丁联用时需调整剂量。
  • 患有心血管疾病、低血压倾向者慎用沙丁胺醇或其他β受体激动剂。
特定人群使用
  • 不建议6岁以下儿童及老年人使用;哺乳期妇女慎用;代谢能力弱者和药物依赖史患者亦应谨慎使用。
  • 肾功能异常或尿潴留患者也需注意用药安全。

综上所述,托莫西汀是一种针对注意力缺陷障碍及抑郁症的有效治疗药物,在临床应用中需要注意其适应症、禁忌证以及潜在的不良反应,并严格按照医嘱给药。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

点击查看最新优质反应信息

文献信息

  • [EN] METHYL OXAZOLE OREXIN RECEPTOR ANTAGONISTS<br/>[FR] MÉTHYLOXAZOLES ANTAGONISTES DU RÉCEPTEUR DE L'OREXINE
    申请人:MERCK SHARP & DOHME
    公开号:WO2016089721A1
    公开(公告)日:2016-06-09
    The present invention is directed to methyl oxazole compounds which are antagonists of orexin receptors. The present invention is also directed to uses of the compounds described herein in the potential treatment or prevention of neurological and psychiatric disorders and diseases in which orexin receptors are involved. The present invention is also directed to compositions comprising these compounds. The present invention is also directed to uses of these compositions in the potential prevention or treatment of such diseases in which orexin receptors are involved.
    本发明涉及甲基噁唑化合物,其为促进睡眠的受体拮抗剂。本发明还涉及所述化合物在潜在治疗或预防涉及促进睡眠的神经和精神疾病和疾病中的用途。本发明还涉及包含这些化合物的组合物。本发明还涉及这些组合物在潜在预防或治疗涉及促进睡眠的疾病中的用途。
  • NAPHTHALENE-BASED INHIBITORS OF ANTI-APOPTOTIC PROTEINS
    申请人:Pellecchia Maurizio
    公开号:US20090105319A1
    公开(公告)日:2009-04-23
    Methods of using apogossypol and its derivatives for treating inflammation is disclosed. Also, there is described a group of compounds having structure A, or a pharmaceutically acceptable salt, hydrate, N-oxide, or solvate thereof are provided: wherein each R is independently selected from the group consisting of H, C(O)X, C(O)NHX, NH(CO)X, SO 2 NHX, and NHSO 2 X, wherein X is selected from the group consisting of an alkyl, a substituted alkyl, an aryl, a substituted aryl, an alkylaryl, and a heterocycle. Compounds of group A may be used for treating various diseases or disorders, such as cancer.
    使用阿波戈司宝及其衍生物治疗炎症的方法被披露。此外,还描述了一组具有结构A的化合物,或其药学上可接受的盐、水合物、N-氧化物或溶剂化合物: 其中每个R独立地选自H、C(O)X、C(O)NHX、NH(CO)X、SO2NHX和NHSO2X组成的组,其中X选自烷基、取代烷基、芳基、取代芳基、烷基芳基和杂环的组。A组化合物可用于治疗各种疾病或疾病,如癌症。
  • [EN] QUINAZOLINE DERIVATIVES, COMPOSITIONS, AND USES RELATED THERETO<br/>[FR] DÉRIVÉS DE QUINAZOLINE, COMPOSITIONS ET UTILISATIONS ASSOCIÉES
    申请人:UNIV EMORY
    公开号:WO2013181135A1
    公开(公告)日:2013-12-05
    The disclosure relates to quinazoline derivatives, compositions, and methods related thereto. In certain embodiments, the disclosure relates to inhibitors of NADPH-oxidases (Nox enzymes) and/or myeloperoxidase.
    该披露涉及喹唑啉衍生物、组合物以及相关方法。在某些实施例中,该披露涉及NADPH-氧化酶(Nox酶)和/或髓过氧化物酶的抑制剂。
  • SUBSTITUTED INDOLES
    申请人:Gant Thomas G.
    公开号:US20090191183A1
    公开(公告)日:2009-07-30
    Disclosed herein are substituted indole cysteinyl leukotriene receptor modulators of Formula I, process of preparation thereof, pharmaceutical compositions thereof, and methods of use thereof.
    本文揭示了Formula I的替代吲哚半胱氨酸白三烯受体调节剂,其制备方法,药物组合物以及使用方法。
  • Thiol Activation toward Selective Thiolation of Aromatic C–H Bond
    作者:Jing-Hao Wang、Tao Lei、Hao-Lin Wu、Xiao-Lei Nan、Xu-Bing Li、Bin Chen、Chen-Ho Tung、Li-Zhu Wu
    DOI:10.1021/acs.orglett.0c01050
    日期:2020.5.15
    Direct C-S bond coupling is an attractive way to construct aryl sulfur ether, a building block for a variety of biological active molecules. Herein, we disclose an effective model for regioselective thiolation of the aromatic C-H bond by thiol activation instead of arene activation. Strikingly, this method has been applied into anisole derivatives that are not available in the arene activation approach
    直接CS键偶联是构建芳基硫醚的一种有吸引力的方法,芳基硫醚是多种生物活性分子的基础。在这里,我们公开了通过硫醇活化而不是芳烃活化对芳香族CH键进行区域选择性硫醇化的有效模型。引人注目的是,该方法已被应用到芳烃活化方法中无法获得的苯甲醚衍生物中,从而形成具有高反应活性的单一硫醚异构体。
查看更多