3-氟-4-羟基苯甲醛可用于合成3-环丙甲氧基-4-二氟甲氧基苯甲酸,这是制备罗氟司特的关键中间体和杂质。
应用3-氟-4-羟基苯甲醛可用于制备罗氟司特(Roflumilast)的关键中间体3-环丙甲氧基-4-二氟甲氧基苯甲酸。罗氟司特是由瑞士Nycomed公司和美国Forest公司共同研发的第一个、也是目前唯一的可口服治疗慢性阻塞性肺病(COPD)的选择性磷酸二酯酶-4抑制剂。
2010年5月,欧洲药品管理局(EMEA)批准其用于严重的慢性阻塞性肺病和慢性支气管炎;2011年2月,美国食品和药品监督管理局(FDA)再次批准其用于治疗严重的COPD。该药物作用机制新颖、疗效确切、适用人群广泛,市场前景十分广阔。
制备将3-氟-4-甲氧基苯甲醛(5.00g,32.5mmol)与48%氢溴酸(30mL)混合,在140℃下加热并用氩气搅拌3小时。然后用水(150mL)稀释,并使用二氯甲烷(2×100mL)萃取混合物。合并的有机层经盐水洗涤后,再经硫酸钠干燥。真空除去溶剂后,得到作为棕色固体的化合物3-氟-4-羟基苯甲醛(4.36g,30.2mmol),产率为97%。
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
3-氟-4-甲氧基苯甲醛 | 3-fluoro-p-anisaldehyde | 351-54-2 | C8H7FO2 | 154.141 |
2-氟-4-甲基苯酚 | 2-fluoro-4-methylphenole | 452-81-3 | C7H7FO | 126.13 |
3-氟-4-羟基苯腈 | 3-fluoro-4-hydroxybenzonitrile | 405-04-9 | C7H4FNO | 137.113 |
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
3-氟-4-甲氧基苯甲醛 | 3-fluoro-p-anisaldehyde | 351-54-2 | C8H7FO2 | 154.141 |
4-乙氧基-3-氟苯甲醛 | 4-ethoxy-3-fluorobenzaldehyde | 452-00-6 | C9H9FO2 | 168.168 |
—— | 3-Fluor-4-propoxy-benzaldehyd | 19415-48-6 | C10H11FO2 | 182.195 |
3-氟-4-(2-羟基乙氧基)苯甲醛 | 3-fluoro-4-(2-hydroxyethoxy)benzaldehyde | 1004779-24-1 | C9H9FO3 | 184.167 |
4-(二氟甲氧基)-3-氟苯甲醛 | 3-fluoro-4-difluoromethoxybenzaldehyde | 1214379-56-2 | C8H5F3O2 | 190.122 |
—— | 3-fluoro-4-(prop-2-yn-1-yloxy)benzaldehyde | —— | C10H7FO2 | 178.163 |
—— | 3-fluoro-4-methoxymethoxybenzaldehyde | 949090-28-2 | C9H9FO3 | 184.167 |
—— | 3-Fluoro-4-(3-hydroxypropoxy)benzaldehyde | 937732-86-0 | C10H11FO3 | 198.194 |
—— | 2-fluoro-4-(hydroxymethyl)phenol | 96740-93-1 | C7H7FO2 | 142.13 |
4-正丁氧基-3-氟苯甲醛 | 4-n-Butoxy-3-fluorobenzaldehyde | 19415-49-7 | C11H13FO2 | 196.221 |
—— | 4-(3-chloropropoxy)-3-fluorobenzaldehyde | 596809-66-4 | C10H10ClFO2 | 216.64 |
—— | 3-fluoro-4-(2-(S)-butoxy)benzaldehyde | 635702-35-1 | C11H13FO2 | 196.221 |
—— | 3-Fluoro-4-octoxybenzaldehyde | 790663-15-9 | C15H21FO2 | 252.329 |
3-氟-5-溴-4-羟基苯甲醛 | 3-bromo-5-fluoro-4-hydroxybenzaldehyde | 185345-46-4 | C7H4BrFO2 | 219.01 |
4-(苄氧基)-3-氟苯甲醛 | 4-(benzyloxy)-3-fluorobenzaldehyde | 175968-61-3 | C14H11FO2 | 230.239 |
—— | 4-(2-(diethylamino)ethoxy)-3-fluorobenzaldehyde | —— | C13H18FNO2 | 239.29 |
—— | 4-(2,2-dimethoxy-ethoxy)-3-fluoro-benzaldehyde | 865450-69-7 | C11H13FO4 | 228.22 |
—— | 4-(difluoromethyl)-2-fluorophenol | 1214333-89-7 | C7H5F3O | 162.111 |
—— | 4-(4-fluorobenzyloxy)-3-fluorobenzaldehyde | —— | C14H10F2O2 | 248.229 |
—— | 3-fluoro-4-(oxetan-3-yloxy)benzaldehyde | —— | C10H9FO3 | 196.178 |
—— | 3-Fluoro-4-((3-fluorobenzyl)oxy)benzaldehyde | 1443348-18-2 | C14H10F2O2 | 248.229 |
—— | 3-Fluoro-4-{[2-(trimethylsilyl)ethoxy]methoxy}benzaldehyde | 689258-59-1 | C13H19FO3Si | 270.376 |
—— | 3-fluoro-4-(3-piperidin-1-yl-propoxy)-benzaldehyde | 865449-87-2 | C15H20FNO2 | 265.328 |
—— | 3-fluoro-4-(2-morpholinoethoxy)benzaldehyde | —— | C13H16FNO3 | 253.273 |
—— | 4-(4-chloro-benzyloxy)-3-fluoro-benzaldehyde | 918524-00-2 | C14H10ClFO2 | 264.684 |
—— | 3-fluoro-4-(3-morpholin-4-ylpropoxy)benzaldehyde | —— | C14H18FNO3 | 267.3 |
—— | 2-fluoro-4-formylphenyl dimethylcarbamate | 1296131-14-0 | C10H10FNO3 | 211.193 |
—— | 4-n-hexyloxy-3-fluorobenzoic acid | 7247-24-7 | C13H17FO3 | 240.275 |
—— | 4-(tert-butyl-dimethyl-silanyloxy)-3-fluoro-benzaldehyde | 1095989-95-9 | C13H19FO2Si | 254.377 |
—— | 3-fluoro-4-(2-(S)-butoxy)benzoic acid | 636561-53-0 | C11H13FO3 | 212.221 |
—— | (E)-3-(3-fluoro-4-hydroxyphenyl)acrylic acid | 56926-74-0 | C9H7FO3 | 182.151 |
A series of novel fluorinated anticancer agents containing the indolin-2-one moiety were designed, synthesized and evaluated for their anticancer activities
Isoliquiritigenin (ISL), a natural product isolated from licorice root, exhibits anti-gastric cancer effects. However, applications of ISL are still limited in clinical practice due to its poor bioavailability. To discovery of more effective anti-gastric cancer agents based on ISL, aldol condensation reaction was applied to synthesize the ISL analogues. MTS assay was used to evaluate the inhibitory activities of ISL analogues against SGC-7901, BGC-823 and GES-1 cells in vitro. Cell cycle distribution, apoptosis and reactive oxygen species (ROS) generation were detected by flow cytometry. Western blot assay was used to analyze the expression levels of related proteins. The drug-likeness and pharmacokinetic properties were predicted with Osiris property explorer and PreADMET server. As a result, 18 new ISL analogues (ISL-1 to ISL-18) were synthesized. Among these analogues, ISL-17 showed the strongest inhibitory activities against SGC-7901 and BGC-823 cells, and could induce G2/M cell cycle arrest and apoptosis in these two cell lines. Treatment with ISL-17 resulted in increased ROS production and elevated autophagy levels in SGC-7901 cells. The PI3K/AKT/mTOR signaling pathway was down-regulated after treatment with ISL-17 in SGC-7901 cells. The results of drug-likeness and pharmacokinetic prediction indicated that all the ISL analogues complied with Lipinski's rule of five and Veber rule and had a favorable ADME character. Overall, our results attest that ISL-17 holds promise as a candidate agent against gastric cancer.