摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2R,3S,4S,6R,7R/S,8E,10R,11R)-S-2-acetamidoethyl-3,11-dihydroxy-2,4,6,10-tetramethyl-7-oxotridec-8-enethioate | 858371-92-3

中文名称
——
中文别名
——
英文名称
(2R,3S,4S,6R,7R/S,8E,10R,11R)-S-2-acetamidoethyl-3,11-dihydroxy-2,4,6,10-tetramethyl-7-oxotridec-8-enethioate
英文别名
(2R,3S,4S,6R,10R,11R,8E)-S-2-Ethanamidoethyl 3,11-dihydroxy-2,4,6,10-tetramethyl-7-oxotridec-8-enethioate;S-(2-acetamidoethyl) (E,2R,3S,4S,6R,10R,11R)-3,11-dihydroxy-2,4,6,10-tetramethyl-7-oxotridec-8-enethioate
(2R,3S,4S,6R,7R/S,8E,10R,11R)-S-2-acetamidoethyl-3,11-dihydroxy-2,4,6,10-tetramethyl-7-oxotridec-8-enethioate化学式
CAS
858371-92-3
化学式
C21H37NO5S
mdl
——
分子量
415.594
InChiKey
GAYVQFBZZSAYQS-LXDBCWTRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.6
  • 重原子数:
    28
  • 可旋转键数:
    14
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.76
  • 拓扑面积:
    129
  • 氢给体数:
    3
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (2R,3S,4S,6R,7R/S,8E,10R,11R)-S-2-acetamidoethyl-3,11-dihydroxy-2,4,6,10-tetramethyl-7-oxotridec-8-enethioate2-乙烯基吡啶 、 recombinant pikromycin thioesterase mutant S148C 作用下, 以 aq. phosphate buffer 、 二甲基亚砜 为溶剂, 反应 0.33h, 生成 10-去氧微甘菊内酯
    参考文献:
    名称:
    匹克霉素硫酯酶中的单个活性位点突变产生更有效的大环化催化剂
    摘要:
    天然产物类似物的大内酯化对生物合成组装和合成化学提出了重大挑战。在上一篇论文中,我们发现了吡克霉素(Pik)系统中处理非天然底物的硫酯酶(TE)结构域催化瓶颈,阻止了差向异构化大环内酯的形成。在这里,我们进行分子动力学模拟,显示差向异构化的六酮化合物被容纳在 Pik TE 活性位点内;然而,底物的内在构象偏好导致主要是非生产性构象,与观察到的水解一致。因此,我们设计了立体选择性 Pik TE,以产生一种变体 (TES148C),该变体具有改进的反应动力学和非天然差向异构化六酮化合物的功能获得处理。 TES148C 模型和 TEWT 反应坐标图的量子力学比较揭示了从逐步加成-消除 (TEWT) 到较低能量协同酰基取代 (TES148C) 的机制变化,解释了功能的获得和反应动力学的改进。最后,我们将 S148C 突变引入聚酮合酶模块 (PikAIII-TE),以提高底物灵活性,从而能够生产非对映体大环内酯。
    DOI:
    10.1021/jacs.7b06436
  • 作为产物:
    参考文献:
    名称:
    聚酮化合物大环内酯 10-脱氧甲炔内酯的化学酶法合成
    摘要:
    聚酮合酶衍生的皮克霉素硫酯酶 (Pik TE)​​ 具有独特的催化 12 和 14 元大环内酯环化的能力。在这项研究中,天然六酮链延长中间体作为其 N-乙酰半胱胺 (NAC) 硫酯的全合成已经实现,其与 Pik TE 的反应证明了 Pik TE 催化其大环内酯化成天然产物 10-脱氧甲炔内酯。使用 Pik TE 对六酮链中间体进行稳态动力学分析。完成了对非天然六酮化合物类似物的初步底物特异性研究,证明了全合成在获得高级聚酮化合物中间体方面的重要性。结果表明 Pik TE 对微小的底物修饰敏感,
    DOI:
    10.1021/ja0504340
点击查看最新优质反应信息

文献信息

  • Biochemical Investigation of Pikromycin Biosynthesis Employing Native Penta- and Hexaketide Chain Elongation Intermediates
    作者:Courtney C. Aldrich、Brian J. Beck、Robert A. Fecik、David H. Sherman
    DOI:10.1021/ja042592h
    日期:2005.6.1
    the pikromycin (Pik) polyketide synthase to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes underlying polyketide synthesis, specifically the mechanistic details of chain extension, keto group processing, acyl chain release, and macrocyclization. We have synthesized the natural pentaketide and hexaketide chain elongation intermediates as N-acetyl
    pikromycin (Pik) 聚酮化合物合成酶生成 12 和 14 元环大环内酯的独特能力为探索聚酮化合物合成的基本过程提供了机会,特别是链延伸、酮基加工、酰基链释放和大环化。我们合成了天然五肽和六酮链延长中间体作为 N-乙酰半胱胺 (NAC) 硫酯,并将它们用作与工程化 PikAIII+TE 以及与天然 PikAIII(模块 5)和 PikAIV(模块 6)组合进行体外转化的底物) 多功能蛋白质。这项研究直接证明了这些单体模块在催化一个或两个扩链反应、酮基加工步骤、酰基-ACP 释放、环化生成10-脱氧甲炔内酯和萘内酯。结果揭示了 Pik 单体对其天然聚酮化合物底物的极大偏好,并提供了与先前使用非天然二酮 NAC 硫酯底物的研究的重要比较分析。
  • Linear Aglycones Are the Substrates for Glycosyltransferase DesVII in Methymycin Biosynthesis:  Analysis and Implications
    作者:Chai-Lin Kao、Svetlana A. Borisova、Hak Joong Kim、Hung-wen Liu
    DOI:10.1021/ja058433v
    日期:2006.5.1
    The two essential structural components of macrolide antibiotics are the polyketide aglycone and the appended sugars. The aglycone formation is catalyzed by polyketide synthase (PKS), and glycosylation is catalyzed by an appropriate glycosyltransferase. Although it has been shown that glycosylation occurs after the cyclic aglycone is released from PKS, it is not known whether the acyl carrier protein
    大环内酯类抗生素的两个基本结构成分是聚酮苷元和附加糖。苷元的形成由聚酮合酶 (PKS) 催化,糖基化由适当的糖基转移酶催化。虽然已经表明糖基化发生在环状苷元从 PKS 释放后,但尚不清楚与酰基载体蛋白 (ACP) 结合的线性聚酮链是否也可以被相应的糖基转移酶处理。为了探索这种可能性,以线性形式化学合成了作为 N-乙酰半胱胺 (NAC) 硫酯的糖苷配基 10-脱氧甲炔内酯,它是甲霉素和新甲霉素的前体。随后在专用糖基转移酶 DesVII 和激活剂 DesVIII 存在下与 TDP-d-desosamine 孵育,产生极性更强的产物,其高分辨率质量与预期的糖基化产物一致。该研究首次证明大环内酯糖基转移酶也可以识别和加工其大环内酯底物的线性前体,但活性降低但可测量。
  • Frontiers and Opportunities in Chemoenzymatic Synthesis
    作者:Jonathan D. Mortison、David H. Sherman
    DOI:10.1021/jo101124n
    日期:2010.11.5
    Natural product biosynthetic pathways have evolved enzymes with myriad activities that represent an expansive array of chemical transformations for constructing secondary metabolites. Recently, harnessing the biosynthetic potential of these enzymes through chemoenzymatic synthesis has provided a powerful tool that often rivals the most sophisticated methodologies in modern synthetic chemistry and provides new opportunities for accessing chemical diversity. Herein, we describe our research efforts with enzymes from a broad collection of biosynthetic systems, highlighting recent progress in this exciting field.
  • Macrolactonization to 10-deoxymethynolide catalyzed by the recombinant thioesterase of the picromycin/methymycin polyketide synthase
    作者:Weiguo He、Jiaquan Wu、Chaitan Khosla、David E. Cane
    DOI:10.1016/j.bmcl.2005.09.077
    日期:2006.1
    The recombinant thioesterase (TE) domain of the picromycin/methymycin synthase (PICS) catalyzes the macrolactonization of 3, the N-acetylcysteamine thioester of seco-10-deoxymethynolide to generate 10-deoxymethynolide (1) with high efficiency. By contrast, 4, the 7-dihydro derivative of seco-thioester 3, undergoes exclusive hydrolysis by PICS TE to seco-acid 5. The recombinant TE domain of 6-deoxyerythronolide B synthase (DEBS TE) shows the same reaction specificity as PICS TE, but with significantly lower activity. (c) 2005 Elsevier Ltd. All rights reserved.
  • Chain Elongation, Macrolactonization, and Hydrolysis of Natural and Reduced Hexaketide Substrates by the Picromycin/Methymycin Polyketide Synthase
    作者:Jiaquan Wu、Weiguo He、Chaitan Khosla、David E. Cane
    DOI:10.1002/anie.200502246
    日期:2005.11.25
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定