Structural modifications of coumarin derivatives: Determination of antioxidant and lipoxygenase (LOX) inhibitory activity
摘要:
In the present project, a series of coumarin analogues, were synthesised and evaluated for their antioxidant and soybean lipoxygenase inhibitory activity. A variety of structural modifications on the coumarin scaffold revealed interesting structure-activity relationships concerning the different biological assays. Prenyloxy-coumarins 9 and 10 displayed the best combined inhibition of lipid peroxidation and soybean lipoxygenase. Thiocoumarins 11 and 14 were identified as potent lipoxygenase inhibitors whereas hydrazone analogues 15 and 16 were efficient DPPH radical scavengers. (C) 2014 Elsevier Ltd. All rights reserved.
Structural modifications of coumarin derivatives: Determination of antioxidant and lipoxygenase (LOX) inhibitory activity
摘要:
In the present project, a series of coumarin analogues, were synthesised and evaluated for their antioxidant and soybean lipoxygenase inhibitory activity. A variety of structural modifications on the coumarin scaffold revealed interesting structure-activity relationships concerning the different biological assays. Prenyloxy-coumarins 9 and 10 displayed the best combined inhibition of lipid peroxidation and soybean lipoxygenase. Thiocoumarins 11 and 14 were identified as potent lipoxygenase inhibitors whereas hydrazone analogues 15 and 16 were efficient DPPH radical scavengers. (C) 2014 Elsevier Ltd. All rights reserved.
An ultrasound-assisted one-pot acylation/cyclization reaction between N-acylbenzotriazoles and 2-hydroxybenzaldehydes has been developed for the synthesis of substituted 3-arylcoumarins. Using ultrasound not only allows rapid and clean conversion but also simplifies experimental setup and parallel workup leading to rapid generation of 3-arylcoumarin libraries under mild, solvent-free, and chromatography-free
In the present project, a series of coumarin analogues, were synthesised and evaluated for their antioxidant and soybean lipoxygenase inhibitory activity. A variety of structural modifications on the coumarin scaffold revealed interesting structure-activity relationships concerning the different biological assays. Prenyloxy-coumarins 9 and 10 displayed the best combined inhibition of lipid peroxidation and soybean lipoxygenase. Thiocoumarins 11 and 14 were identified as potent lipoxygenase inhibitors whereas hydrazone analogues 15 and 16 were efficient DPPH radical scavengers. (C) 2014 Elsevier Ltd. All rights reserved.