摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

罗伐他汀 | 287714-41-4

中文名称
罗伐他汀
中文别名
罗苏伐他汀;瑞舒伐他汀;冠脂妥;7-[4-(4-氟苯基)-6-异丙基-2-(甲基-甲磺酰-氨基)-嘧啶-5-基]-3,5-二羟基庚-6-烯酸;罗素他汀;7-[4-(4-氟苯基)-6-异丙基-2-(甲基-甲磺酰-氨基)-嘧啶-5-基]-3,5-二羟基庚-6;罗苏伐他汀中间体;瑞舒伐他汀酸;罗伐他汀(钙盐形式)
英文名称
rosuvastatin
英文别名
RSV;rosuvastatin calcium;rosuvastatin acid;Crestor;(3R,5S,6E)-7-[4-(4-fluorophenyl)-2-(N-methylmethanesulfonamido)-6-(propan-2-yl)pyrimidin-5-yl]-3,5-dihydroxyhept-6-enoic acid;ZD4522;(E,3R,5S)-7-[4-(4-fluorophenyl)-2-[methyl(methylsulfonyl)amino]-6-propan-2-ylpyrimidin-5-yl]-3,5-dihydroxyhept-6-enoic acid
罗伐他汀化学式
CAS
287714-41-4
化学式
C22H28FN3O6S
mdl
——
分子量
481.545
InChiKey
BPRHUIZQVSMCRT-VEUZHWNKSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    161.9 °C
  • 沸点:
    745.6±70.0 °C(Predicted)
  • 密度:
    1.368±0.06 g/cm3(Predicted)
  • 溶解度:
    DMSO(少许)、甲醇(少许)、水(少许)
  • 物理描述:
    Solid
  • 蒸汽压力:
    5.27X10-19 mm Hg at 25 °C (est)
  • 稳定性/保质期:

    Stable under recommended storage conditions. /Rosuvastatin calcium/

  • 解离常数:
    pKa1 = 4.0 (carboxylic acid) (est)

计算性质

  • 辛醇/水分配系数(LogP):
    1.6
  • 重原子数:
    33
  • 可旋转键数:
    10
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.41
  • 拓扑面积:
    149
  • 氢给体数:
    3
  • 氢受体数:
    10

ADMET

代谢
瑞舒伐他汀的代谢并不广泛,这一点从回收的放射性标记剂量中代谢物占很小比例(约10%)可以看出。细胞色素P450(CYP)2C9是形成瑞舒伐他汀主要代谢物N-去甲基瑞舒伐他汀的主要负责酶,这种代谢物在体外大约保留了其母化合物20-50%的药理活性。然而,这一代谢途径被认为在临床上并不重要,因为当瑞舒伐他汀氟康唑(一种强效的CYP2C9抑制剂)共同给药时,并未观察到对瑞舒伐他汀药代动力学的影响。体外和体内的数据表明,瑞舒伐他汀没有临床上显著的细胞色素P450相互作用(作为底物、抑制剂或诱导剂)。因此,与其他由细胞色素P450代谢的药物共同给药时,几乎不存在药物-药物相互作用的潜力。
Rosuvastatin is not extensively metabolized, as demonstrated by the small amount of radiolabeled dose that is recovered as a metabolite (~10%). Cytochrome P450 (CYP) 2C9 is primarily responsible for the formation of rosuvastatin's major metabolite, N-desmethylrosuvastatin, which has approximately 20-50% of the pharmacological activity of its parent compound in vitro. However, this metabolic pathway isn't deemed to be clinically significant as there were no observable effects found on rosuvastatin pharmacokinetics when rosuvastatin was coadministered with fluconazole, a potent CYP2C9 inhibitor. In vitro and in vivo data indicate that rosuvastatin has no clinically significant cytochrome P450 interactions (as substrate, inhibitor or inducer). Consequently, there is little potential for drug-drug interactions upon coadministration with agents that are metabolized by cytochrome P450.
来源:DrugBank
代谢
瑞舒伐他汀的代谢并不广泛;大约10%的放射性剂量以代谢物的形式回收。主要代谢物是N-去甲基瑞舒伐他汀,它主要由细胞色素P450 2C9形成,体外研究表明N-去甲基瑞舒伐他汀HMG-CoA还原酶抑制活性大约是母体化合物的六分之一到一半。总体而言,超过90%的活性血浆HMG-CoA还原酶抑制活性是由母体化合物贡献的。
Rosuvastatin is not extensively metabolized; approximately 10% of a radiolabeled dose is recovered as metabolite. The major metabolite is N-desmethyl rosuvastatin, which is formed principally by cytochrome P450 \ 2C9, and in vitro studies have demonstrated that N-desmethyl rosuvastatin has approximately one-sixth to one-half the HMG-CoA reductase inhibitory activity of the parent compound. Overall, greater than 90% of active plasma HMG-CoA reductase inhibitory activity is accounted for by the parent compound.
来源:Hazardous Substances Data Bank (HSDB)
代谢
未广泛代谢。只有大约10%以代谢物的形式排出。细胞色素P450(CYP)2C9主要负责形成瑞舒伐他汀的主要代谢物,N-去甲基瑞舒伐他汀。N-去甲基瑞舒伐他汀在体外具有大约50%的母体化合物的药理活性。瑞舒伐他汀的清除不依赖于细胞色素P450 3A4的代谢,到临床上显著的程度。瑞舒伐他汀占总药理作用的90%以上。CYP2C9的抑制剂使AUC增加不到2倍。这种相互作用似乎不具有临床意义。 消除途径:瑞舒伐他汀未广泛代谢;大约10%的放射性剂量以代谢物的形式回收。口服给药后,瑞舒伐他汀及其代谢物主要随粪便排出(90%)。静脉给药后,大约28%的总清除率通过肾脏途径,72%通过肝脏途径。 半衰期:19小时
Not extensively metabolized. Only ~10% is excreted as metabolite. Cytochrome P450 (CYP) 2C9 is primarily responsible for the formation of rosuvastatin's major metabolite, N-desmethylrosuvastatin. N-desmethylrosuvastatin has approximately 50% of the pharmacological activity of its parent compound in vitro. Rosuvastatin clearance is not dependent on metabolism by cytochrome P450 3A4 to a clinically significant extent. Rosuvastatin accounts for greater than 90% of the pharmacologic action. Inhibitors of CYP2C9 increase the AUC by less than 2-fold. This interaction does not appear to be clinically significant. Route of Elimination: Rosuvastatin is not extensively metabolized; approximately 10% of a radiolabeled dose is recovered as metabolite. Following oral administration, rosuvastatin and its metabolites are primarily excreted in the feces (90%). After an intravenous dose, approximately 28% of total body clearance was via the renal route, and 72% by the hepatic route. Half Life: 19 hours
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
鉴定和使用:罗伐他汀是一种羟甲戊二酰辅酶A还原酶抑制剂。它用于降低中风、心肌梗死和动脉再血管化手术的风险。人类暴露和毒性:罗伐他汀是市面上最有效的3-羟基-3-甲基-戊二酰辅酶A还原酶抑制剂,用于降低低密度脂蛋白胆固醇罗伐他汀与多种不良反应有关,包括横纹肌溶解和关节痛。在接受他汀类药物(包括罗伐他汀)治疗的患者中,已报告出现肌肉病和横纹肌溶解,继发于肌红蛋白尿的急性肾功能衰竭。这些不良反应可能在任何剂量下发生,但在罗伐他汀最高剂量(每日40毫克)时风险增加。有报道称,一位患者在接受长期罗伐他汀治疗后的延迟性横纹肌溶解引发了应激性心肌病,患者此前没有应激源或医疗状况的变化,并伴有非特异性肌肉相关症状的投诉。文献报告了一名马拉松运动员在比赛期间接受罗伐他汀治疗时出现急性横纹肌溶解的案例。一名77岁的患者在接受罗伐他汀治疗后发展为急性胰腺炎,停药后症状缓解。在接受他汀类药物(包括罗伐他汀)治疗的患者中,有罕见的市场后报告出现致命和非致命的肝衰竭。罗伐他汀的遗传毒性潜力通过人类外周血淋巴细胞的染色体畸变(CAs)、微核(MN)和彗星试验中的DNA损伤进行了评估。根据这些结果,罗伐他汀对人类外周淋巴细胞具有细胞毒性和断裂/非整倍性作用。 动物研究:罗伐他汀在单次给药给大鼠和狗的口服和静脉注射途径下显示出较低的急性毒性。给予1000 mg/kg或2000 mg/kg口服剂量的大鼠没有死亡,除了在2000 mg/kg时体重下降外,在任一剂量平下都没有治疗相关效应。狗口服剂量为1000 mg/kg或2000 mg/kg,在给药当天观察到呕吐是两个性别中的主要临床发现。在一项为期104周的致癌性研究中,大鼠的剂量平为2、20、60或80 mg/kg/天,仅在80 mg/kg/天剂量下的雌性大鼠子宫息肉的发生率统计学上显著增加。在为期107周的致癌性研究中,小鼠的剂量为10、60、200或400 mg/kg/天,400 mg/kg/天的剂量耐受性差,导致该剂量组提前终止。在200 mg/kg/天的剂量下观察到肝细胞癌的发生率增加,在60和200 mg/kg/天的剂量下观察到肝细胞腺瘤的增加。罗伐他汀在大鼠中≤25 mg/kg/天或兔中≤3 mg/kg/天的给药没有显示出致畸效应。在体外,罗伐他汀在沙门氏菌属伤寒杆菌和埃希氏菌属大肠杆菌的Ames试验、L-5178 y +/-小鼠淋巴瘤以及中国仓鼠肺细胞的染色体畸变试验中,无论有无代谢活化,均不具有诱变或断裂作用。罗伐他汀在小鼠体内微核试验中呈阴性。
IDENTIFICATION AND USE: Rosuvastatin is hydroxymethylglutaryl-CoA reductase inhibitor. It is is indicated to reduce the risk of stroke, myocardial infarction, and arterial revascularization procedures. HUMAN EXPOSURE AND TOXICITY: Rosuvastatin is the most potent 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitor commercially available to lower low-density lipoprotein cholesterol. Rosuvastatin has been associated with several adverse effects, including rhabdomyolysis and arthralgias. Myopathy and rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported in patients receiving statins, including rosuvastatin. These adverse effects can occur at any dosage, but the risk is increased with the highest dosage of rosuvastatin (40 mg daily). There is a report of Takotsubo cardiomyopathy, triggered by delayed-onset rhabdomyolysis following the administration of long-term rosuvastatin treatment, without any preceding stressors or changes in the patient's medical condition, in association with complaints of non-specific muscle-related symptoms. Literature reported the case of a marathon runner who presented with acute rhabdomyolysis during competition while being under rosuvastatin treatment. A 77-year-old patient developed acute pancreatitis after treatment with rosuvastatin, which resolved on withdrawal of the medication. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including rosuvastatin. The genotoxic potential of rosuvastatin was assessed by chromosomal aberrations (CAs), micronucleus (MN) and DNA damage by comet assay in human peripheral blood lymphocytes. According to these results, rosuvastatin is cytotoxic and clastogenic/aneugenic in human peripheral lymphocytes. ANIMAL STUDIES: Rosuvastatin was shown to be of low acute toxicity following administration of single doses to rats and dogs by oral and intravenous routes. There were no mortalities in rats given an oral dose of 1000 mg/kg or 2000 mg/kg, and other than depression of bodyweight at 2000 mg/kg, there were no treatment-related effects at either dose level. Dogs received oral doses of 1000 mg/kg or 2000 mg/kg with vomiting on the day of dosing observed as the major clinical finding in both sexes. In a 104-week carcinogenicity study in rats at dose levels of 2, 20, 60 or 80 mg/kg/day, the incidence of uterine polyps was statistically significantly increased only in females at the dose of 80 mg/kg/day. In a 107-week carcinogenicity study in mice given 10, 60, 200 or 400 mg/kg/day, the 400 mg/kg/day dose was poorly tolerated, resulting in early termination of this dose group. An increased incidence of hepatocellular carcinomas was observed at 200 mg/kg/day and an increase in hepatocellular adenomas was seen at 60 and 200 mg/kg/day. Rosuvastatin administration did not indicate a teratogenic effect in rats at </= 25 mg/kg/day or in rabbits </= 3 mg/kg/day. In vitro, rosuvastatin was not mutagenic or clastogenic with or without metabolic activation in the Ames test with Salmonella typhimurium and Escherichia coli, L-5178 y +/- mouse lymphomas, and the chromosomal aberration assay in Chinese hamster lung cells. Rosuvastatin was negative in the in vivo mouse micronucleus test.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
瑞舒伐他汀HMG-CoA还原酶的竞争性抑制剂HMG-CoA还原酶催化HMG-CoA转化为戊酸,这是胆固醇生物合成过程中的一个早期限速步骤。瑞舒伐他汀主要在肝脏发挥作用。降低肝胆固醇浓度会刺激肝低密度脂蛋白(LDL)受体的上调,从而增加肝对LDL的摄取。瑞舒伐他汀还抑制肝脏极低密度脂蛋白(VLDL)的合成。总体效果是降低血浆中的LDL和VLDL。 体外和体内动物研究还表明,瑞舒伐他汀在降低血脂属性之外,还具有独立的血管保护作用。瑞舒伐他汀通过减少白细胞滚动、粘附和迁移,对大鼠肠系膜微血管内皮细胞产生抗炎作用(A2814)。该药物还调节一氧化氮合酶(NOS)的表达,并减少大鼠心脏的缺血-再灌注损伤(A2818)。瑞舒伐他汀通过上调NOS(A2816)以及通过转录后聚腺苷酸化增加NOS的稳定性(A7824),增加一氧化氮生物利用度(A2814, 12031849, 15914111)。尚不清楚瑞舒伐他汀是如何产生这些效果的,尽管它们可能是因为戊酸浓度的降低。
Rosuvastatin is a competitive inhibitor of HMG-CoA reductase. HMG-CoA reductase catalyzes the conversion of HMG-CoA to mevalonate, an early rate-limiting step in cholesterol biosynthesis. Rosuvastatin acts primarily in the liver. Decreased hepatic cholesterol concentrations stimulate the upregulation of hepatic low density lipoprotein (LDL) receptors which increases hepatic uptake of LDL. Rosuvastatin also inhibits hepatic synthesis of very low density lipoprotein (VLDL). The overall effect is a decrease in plasma LDL and VLDL. In vitro and in vivo animal studies also demonstrate that rosuvastatin exerts vasculoprotective effects independent of its lipid-lowering properties. Rosuvastatin exerts an anti-inflammatory effect on rat mesenteric microvascular endothelium by attenuating leukocyte rolling, adherence and transmigration (A2814). The drug also modulates nitric oxide synthase (NOS) expression and reduces ischemic-reperfusion injuries in rat hearts (A2818). Rosuvastatin increases the bioavailability of nitric oxide (A2814, 12031849, 15914111) by upregulating NOS (A2816) and by increasing the stability of NOS through post-transcriptional polyadenylation (A7824). It is unclear as to how rosuvastatin brings about these effects though they may be due to decreased concentrations of mevalonic acid.
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 肝毒性
瑞舒伐他汀治疗与1%至3%的患者出现轻度、无症状且通常是暂时的血清转酶升高有关。高于正常上限3倍的ALT平在接受瑞舒伐他汀治疗的患者中略多于接受安慰剂的患者(1.1%对0.5%)。血清酶升高在高剂量瑞舒伐他汀治疗时更为常见,每日40毫克时为2.2%。这些升高大多数是自限性的,不需要调整剂量。瑞舒伐他汀还与明显的、临床上可见的肝损伤有关,但这种情况很罕见,发生率低于1/10,000患者。发病时间通常在服用2到4个月后,血清酶升高的模式通常是肝细胞型的,尽管也有胆汁淤积的病例报告。皮疹、发热和嗜酸性粒细胞增多不常见。包括瑞舒伐他汀在内的几种他汀类药物已被与具有自身免疫特征肝炎相联系,其特点为ANA阳性、血清免疫球蛋白平升高和对皮质类固醇的临床反应。然而,这些特征并非一成不变(案例1)。一旦停用瑞舒伐他汀,损伤通常是自限性的并迅速解决,但可能会出现严重且致命的情况。
Rosuvastatin therapy is associated with mild, asymptomatic and usually transient serum aminotransferase elevations in 1% to 3% of patients. ALT levels above 3 times the upper limit of normal (ULN) occur slightly more frequently among rosuvastatin treated [1.1%] than placebo [0.5%] recipients. Serum enzyme elevations are more common with higher doses of rosuvastatin, being 2.2% with 40 mg daily. Most of these elevations are self-limited and do not require dose modification. Rosuvastatin is also associated with frank, clinically apparent hepatic injury but this is rare, occurring in less than 1:10,000 patients. The onset is typically after 2 to 4 months ,and the pattern of serum enzyme elevations is usually hepatocellular, although cholestatic cases have also been reported. Rash, fever and eosinophilia are uncommon. Several statins including rosuvastatin have been linked to hepatitis with autoimmune features marked by ANA positivity, elevations in serum immunoglobulin levels, and a clinical response to corticosteroids. Such features are not, however, invariable (Case 1). The injury is usually self-limited and resolves rapidly once rosuvastatin is stopped, but it can be severe and fatal instances have been reported.
来源:LiverTox
毒理性
  • 药物性肝损伤
化合物:瑞舒伐他汀
Compound:rosuvastatin
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
DILI 注解:较少的药物性肝损伤关注
DILI Annotation:Less-DILI-Concern
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
吸收、分配和排泄
  • 吸收
在一项针对健康白人男性志愿者的研究中,发现瑞舒伐他汀的绝对口服生物利用度大约为20%,而吸收估计为50%,这与口服给药后显著的首次通过效应相一致。另一项针对健康志愿者的研究发现,瑞舒伐他汀的峰血浆浓度(Cmax)为6.06ng/mL,口服给药后中位数5小时达到。Cmax和AUC都随着剂量的增加而近似成比例增加。食物的影响或晚上与早上给药对瑞舒伐他汀的AUC没有影响。许多他汀类药物已知与肝脏摄取转运体相互作用,因此在肝脏作用部位达到高浓度。乳腺癌耐药蛋白(BCRP)是一种膜结合蛋白,对瑞舒伐他汀的吸收尤其重要,因为CYP3A4在其代谢中的参与较少。对BCRP基因c.421C>A单核苷酸多态性(SNPs)的药物遗传学研究证据表明,与对照421CC基因型的受试者相比,421AA基因型的个体对瑞舒伐他汀的功能活性降低,AUC和Cmax值增加了2.4倍。这对于药物疗效和毒性反应的变异具有重要意义,特别是由于BCRP c.421C>A多态性在亚洲人群中的发生率高于白种人。受此多态性影响的其它他汀类药物包括[伐他汀]和[阿托伐他汀]。OATP1B1(有机阴离子转运多肽1B1)肝脏转运蛋白的遗传差异也被证明影响瑞舒伐他汀的药代动力学。对c.521T>C SNP的药物遗传学研究证据显示,与521TT纯合子个体相比,521CC纯合子个体的瑞舒伐他汀AUC增加了1.62倍。受此多态性影响的其它他汀类药物包括[辛伐他汀]、[匹伐他汀]、[阿托伐他汀]和[普伐他汀]。对于已知具有上述c.421AA BCRP或c.521CC OATP1B1基因型的患者,建议最大日剂量为20mg瑞舒伐他汀,以避免因药物暴露增加而引起的不良反应,如肌肉疼痛和横纹肌溶解症的风险。
In a study of healthy white male volunteers, the absolute oral bioavailability of rosuvastatin was found to be approximately 20% while absorption was estimated to be 50%, which is consistent with a substantial first-pass effect after oral dosing. Another study in healthy volunteers found that the peak plasma concentration (Cmax) of rosuvastatin was 6.06ng/mL and was reached at a median of 5 hours following oral dosing. Both Cmax and AUC increased in approximate proportion to dose. Neither food nor evening versus morning administration was shown to have an effect on the AUC of rosuvastatin. Many statins are known to interact with hepatic uptake transporters and thus reach high concentrations at their site of action in the liver. Breast Cancer Resistance Protein (BCRP) is a membrane-bound protein that plays an important role in the absorption of rosuvastatin, particularly as CYP3A4 has minimal involvement in its metabolism. Evidence from pharmacogenetic studies of c.421C>A single nucleotide polymorphisms (SNPs) in the gene for BCRP has demonstrated that individuals with the 421AA genotype have reduced functional activity and 2.4-fold higher AUC and Cmax values for rosuvastatin compared to study individuals with the control 421CC genotype. This has important implications for the variation in response to the drug in terms of efficacy and toxicity, particularly as the BCRP c.421C>A polymorphism occurs more frequently in Asian populations than in Caucasians. Other statin drugs impacted by this polymorphism include [fluvastatin] and [atorvastatin]. Genetic differences in the OATP1B1 (organic-anion-transporting polypeptide 1B1) hepatic transporter have also been shown to impact rosuvastatin pharmacokinetics. Evidence from pharmacogenetic studies of the c.521T>C SNP showed that rosuvastatin AUC was increased 1.62-fold for individuals homozygous for 521CC compared to homozygous 521TT individuals. Other statin drugs impacted by this polymorphism include [simvastatin], [pitavastatin], [atorvastatin], and [pravastatin]. For patients known to have the above-mentioned c.421AA BCRP or c.521CC OATP1B1 genotypes, a maximum daily dose of 20mg of rosuvastatin is recommended to avoid adverse effects from the increased exposure to the drug, such as muscle pain and risk of rhabdomyolysis.
来源:DrugBank
吸收、分配和排泄
  • 消除途径
瑞舒伐他汀的代谢并不广泛;大约10%的放射性剂量以代谢物的形式回收。口服给药后,瑞舒伐他汀及其代谢物主要随粪便排出(90%)。静脉给药后,大约28%的总清除率是通过肾脏途径,72%通过肝脏途径。在一项对健康成年男性志愿者的研究中,大约90%的瑞舒伐他汀剂量在给药后72小时内随粪便排出,其余10%随尿液排出。药物在给药10天后完全从体内排出。他们还发现,大约76.8%的排出剂量与母体化合物相比没有变化,其余剂量以代谢物n-去甲基瑞舒伐他汀瑞舒伐他汀-5S-内酯的形式回收。肾小管分泌负责超过90%的总肾清除率,据认为这主要是由摄取转运蛋白OAT3(有机阴离子转运蛋白1)介导的,而OAT1的参与程度最小。
Rosuvastatin is not extensively metabolized; approximately 10% of a radiolabeled dose is recovered as metabolite. Following oral administration, rosuvastatin and its metabolites are primarily excreted in the feces (90%). After an intravenous dose, approximately 28% of total body clearance was via the renal route, and 72% by the hepatic route. A study in healthy adult male volunteers found that approximately 90% of the rosuvastatin dose was recovered in feces within 72 hours after dose, while the remaining 10% was recovered in urine. The drug was completely excreted from the body after 10 days of dosing. They also found that approximately 76.8% of the excreted dose was unchanged from the parent compound, with the remaining dose recovered as the metabolites n-desmethyl rosuvastatin and rosuvastatin-5S-lactone. Renal tubular secretion is responsible for >90% of total renal clearance, and is believed to be mediated primarily by the uptake transporter OAT3 (Organic anion transporter 1), while OAT1 had minimal involvement.
来源:DrugBank
吸收、分配和排泄
  • 分布容积
瑞舒伐他汀在肝脏进行首次通过提取,这是胆固醇合成和LDL-C清除的主要部位。瑞舒伐他汀在稳态下的平均分布容积大约为134升。
Rosuvastatin undergoes first-pass extraction in the liver, which is the primary site of cholesterol synthesis and LDL-C clearance. The mean volume of distribution at steady-state of rosuvastatin is approximately 134 litres.
来源:DrugBank
吸收、分配和排泄
在人体临床药理学研究中,服用罗苏伐他汀后,血浆中药物浓度峰值在3到5小时内达到。Cmax(最大血药浓度)和AUC(药时曲线下面积)随着瑞舒伐他汀剂量的增加而成比例增加。罗苏伐他汀的绝对生物利用度大约为20%。与食物同服瑞舒伐他汀不影响罗苏伐他汀的AUC。罗苏伐他汀的AUC在晚上或早上服用药物后没有差异。
In clinical pharmacology studies in man, peak plasma concentrations of rosuvastatin were reached 3 to 5 hours following oral dosing. Both Cmax and AUC increased in approximate proportion to Crestor dose. The absolute bioavailability of rosuvastatin is approximately 20%. Administration of Crestor with food did not affect the AUC of rosuvastatin. The AUC of rosuvastatin does not differ following evening or morning drug administration.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
瑞舒伐他汀的稳态平均分布容积大约为134升。瑞舒伐他汀有88%与血浆蛋白结合,主要是白蛋白。这种结合是可逆的,并且与血浆浓度无关。
Mean volume of distribution at steady-state of rosuvastatin is approximately 134 liters. Rosuvastatin is 88% bound to plasma proteins, mostly albumin. This binding is reversible and independent of plasma concentrations.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险性防范说明:
    P260,P264,P270,P280,P301+P312+P330,P305+P351+P338,P314,P337+P313,P501
  • 危险性描述:
    H302,H319,H373
  • 储存条件:
    2-8℃

SDS

SDS:0398b82650f1f491f7bc70711c449e48
查看

制备方法与用途

罗伐他汀概述

罗伐他汀,又称瑞舒伐他汀、Crestor,是一种全合成的具有高度肝选择性的β-羟基-β-甲基戊酰辅酶 A (HMG-CoA) 还原酶抑制药。通过抑制内源性胆固醇的合成,它可以显著降低血清胆固醇平,并同时减少低密度脂蛋白一胆固醇(LDL-C)、总胆固醇载脂蛋白(apo)B 的含量,增加高密度脂蛋白一胆固醇 (HDL-C) 的平。这种药物具有抗动脉粥样硬化的作用,适用于治疗原发性高胆固醇血症、混合性高胆固醇血症及其他类型的血脂异常,其耐受性和不良反应相对轻微。

结构特征

尽管罗伐他汀拥有与其他他汀类药物相似的药效基团二羟基庚酸部分,但其分子结构与其它同类药物有所不同。极性的甲磺酰基的存在使其具有较低的亲脂性,导致被动扩散能力低,难以进入非肝细胞。然而,它可以通过选择性有机阴离子转运过程被大量摄入到肝细胞中,并且其相对溶性性质减少了在消除前需要经过细胞色素P450广泛代谢的可能性,与其他药物相互作用的风险也大大降低。

![](图1为罗伐他汀结构式)

药理作用 降血脂作用

罗伐他汀显著的降血脂效果使其成为目前疗效最好的他汀类药物之一。其临床试验结果表明,80 mg剂量时可使低密度脂蛋白胆固醇 (LDL-C) 平降低65%,明显高于其他同类药物。此外,它还能增加 LDL 受体的数量,提高肝脏对胆固醇的清除效率。

对肝细胞的选择性作用

罗伐他汀主要在肝脏中发挥作用,从抑制固醇合成的角度来看,该药对大鼠肝脏的选择性比对外周组织高,并且其选择性高于普伐他汀辛伐他汀。因此,它能够有效降低血浆中的胆固醇平。

临床应用与不良反应

临床上用于治疗原发性高胆固醇血症、家族性高胆固醇血症及其他原因引起的脂质紊乱。罗伐他汀的安全性和耐受性良好,在647例患者中,出现不良反应的比例与安慰剂相似(55%:53%)。常见不良反应包括咽炎、疼痛、头痛、流感样综合征和肌痛等,且增加剂量并不会导致不良反应的增加。临床研究未发现ALT或肌磷酸激酶异常情况。

这些信息是由Chemicalbook的丁红编辑整理,时间截至2015年12月2日。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    罗伐他汀硫酸 作用下, 以 四氢呋喃 为溶剂, 以84%的产率得到
    参考文献:
    名称:
    一种制备瑞舒他伐汀及匹伐他汀2,6-二烯庚 酸酯化合物的方法
    摘要:
    本发明公开一种制备瑞舒他伐汀及匹伐他汀2,6‑二烯庚酸酯化合物的方法,以(4R,6S)‑6‑[(1E)‑2‑[4‑(4‑氟苯基)‑6‑异丙基‑2‑[甲基(甲磺酰)氨基]‑5‑嘧啶]乙烯基]‑2,2‑二甲基‑1,3‑二氧六环‑4‑乙酸叔丁酯和(4R,6S)‑6‑[[(1E)‑2‑环丙基‑4‑(4‑氟苯基)‑3‑喹啉基]乙烯基]‑2,2‑二甲基‑1,3‑二氧六环‑4‑乙酸叔丁酯分别作为瑞舒伐他汀和匹伐他汀的起始原料,经脱保护、水解一步法制备得到他汀酸;再以他汀酸为反应底物,经脱水、取代两步反应制备得到2,6‑二烯庚酸酯化合物。本发明中所涉及的瑞舒伐他汀及匹伐他汀2,6‑二烯庚酸酯的制备合成路线简短易行,操作简便,产品得率高,更加适合于大规模工业化生产。
    公开号:
    CN111100075B
  • 作为产物:
    参考文献:
    名称:
    [EN] CRYSTALLINE AMMONIUM SALTS OF ROSUVASTATIN
    [FR] SELS D'AMMONIUM CRISTALLINS DE LA ROSUVASTATINE
    摘要:
    提供的是罗伐他汀的烷基铵晶体盐,可用于纯化罗伐他汀及其药用可接受盐。
    公开号:
    WO2005051921A1
  • 作为试剂:
    参考文献:
    名称:
    Pharmaceutical compositions
    摘要:
    本发明揭示了一种固态制剂药物组合物,其中至少含有一种游离酸形式的治疗有效量的他汀类药物。
    公开号:
    US20080249120A1
点击查看最新优质反应信息

文献信息

  • DISUBSTITUTED TRIFLUOROMETHYL PYRIMIDINONES AND THEIR USE
    申请人:BAYER PHARMA AKTIENGESELLSCHAFT
    公开号:US20160221965A1
    公开(公告)日:2016-08-04
    The present application relates to novel 2,5-disubstituted 6-(trifluoromethyl)pyrimidin-4(3H)-one derivatives, to processes for their preparation, to their use alone or in combinations for the treatment and/or prevention of diseases, and to their use for preparing medicaments for the treatment and/or prevention of diseases, in particular for treatment and/or prevention of cardiovascular, renal, inflammatory and fibrotic diseases.
    本申请涉及新颖的2,5-二取代6-(三甲基)嘧啶-4(3H)-酮衍生物,其制备方法,其单独或与其他药物联合用于治疗和/或预防疾病,以及用于制备治疗和/或预防疾病的药物,特别是用于治疗和/或预防心血管、肾脏、炎症和纤维化疾病。
  • [EN] CATHEPSIN CYSTEINE PROTEASE INHIBITORS<br/>[FR] INHIBITEURS DE PROTÉASES À CYSTÉINE DE TYPE CATHEPSINES
    申请人:MERCK SHARP & DOHME
    公开号:WO2015054038A1
    公开(公告)日:2015-04-16
    This invention relates to a novel class of compounds which are cysteine protease inhibitors, including but not limited to, inhibitors of cathepsins K, L, S and B. These compounds are useful for treating diseases in which inhibition of bone resorption is indicated, such as osteoporosis.
    这项发明涉及一类新型化合物,它们是半胱酸蛋白酶抑制剂,包括但不限于对卡特普辛K、L、S和B的抑制剂。这些化合物可用于治疗需要抑制骨吸收的疾病,如骨质疏松症。
  • [EN] SULFONYL COMPOUNDS THAT INTERACT WITH GLUCOKINASE REGULATORY PROTEIN<br/>[FR] COMPOSÉS DE SULFONYLE QUI INTERAGISSENT AVEC LA PROTÉINE RÉGULATRICE DE LA GLUCOKINASE
    申请人:AMGEN INC
    公开号:WO2013123444A1
    公开(公告)日:2013-08-22
    The present invention relates to sulfonyl compounds that interact with glucokinase regulatory protein. In addition, the present invention relates to methods of treating type 2 diabetes, and other diseases and/or conditions where glucokinase regulatory protein is involved using the compounds, or pharmaceutically acceptable salts thereof, and pharmaceutical compositions that contain the compounds, or pharmaceutically acceptable salts thereof.
    本发明涉及与葡萄糖激酶调节蛋白相互作用的磺酰基化合物。此外,本发明涉及使用这些化合物或其药学上可接受的盐治疗2型糖尿病和其他涉及葡萄糖激酶调节蛋白的疾病和/或症状的方法,以及含有这些化合物或其药学上可接受的盐的药物组合物。
  • New Drug Delivery System for Crossing the Blood Brain Barrier
    申请人:Lipshutz H. Bruce
    公开号:US20070203080A1
    公开(公告)日:2007-08-30
    New ubiquinol analogs are disclosed, as well as methods of using these compounds to deliver drug moieties to the body.
    新的泛醌类似物被披露,以及利用这些化合物将药物基团输送到人体的方法。
  • [EN] METALLOENZYME INHIBITOR COMPOUNDS<br/>[FR] COMPOSÉS INHIBITEURS DE MÉTALLOENZYMES
    申请人:VPS 3 INC
    公开号:WO2018165520A1
    公开(公告)日:2018-09-13
    Provided are compounds having HDAC6 modulating activity, and methods of treating diseases, disorders or symptoms thereof mediated by HDAC6.
    提供具有HDAC6调节活性的化合物,以及通过HDAC6介导的治疗疾病、疾病或症状的方法。
查看更多