摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

七氟烷 | 28523-86-6

中文名称
七氟烷
中文别名
1,1,1,3,3,3-六氟-2-(氟甲氧基)丙烷;七氟醚;氟代甲基-2,2,2-三氟-1-(三氟甲基)乙醚;七氟异丙甲醚;氟甲基-1,1,1,3,3,3-六氟异丙基醚;氟甲基1,1,1,3,3,3-六氟异丙醇醚
英文名称
sevoflurane
英文别名
1,1,1,3,3,3-hexafluoro-2-fluoromethoxypropane;1,1,1,3,3,3-hexafluoro-2-(fluoromethoxy)propane
七氟烷化学式
CAS
28523-86-6
化学式
C4H3F7O
mdl
MFCD00153189
分子量
200.056
InChiKey
DFEYYRMXOJXZRJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    <25 °C
  • 沸点:
    58°C
  • 密度:
    1.505
  • 闪点:
    58°C
  • 溶解度:
    微溶于水,与乙醇混溶(96%)。
  • 物理描述:
    Solid
  • 颜色/状态:
    Liquid
  • 蒸汽压力:
    193 mm Hg at 25 °C
  • 大气OH速率常数:
    7.30e-14 cm3/molecule*sec
  • 保留指数:
    409
  • 稳定性/保质期:
    如果按照规定使用和储存,则不会分解,并且没有已知的危险反应。应避免与氧化物接触。

计算性质

  • 辛醇/水分配系数(LogP):
    2.8
  • 重原子数:
    12
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    9.2
  • 氢给体数:
    0
  • 氢受体数:
    8

ADMET

代谢
七氟醚通过细胞色素P450 2E1代谢成六氟异丙醇,在此反应中促进了无机氟和二氧化碳的释放。六氟异丙醇迅速与葡萄糖醛酸结合,并通过尿液排出体外。体内代谢研究表明,大约5%的七氟醚剂量可能被代谢。在大多数情况下,无机氟在七氟醚麻醉结束后的2小时内达到最高浓度,并在48小时内恢复到基线水平。七氟醚的代谢可能被异烟肼和乙醇的慢性暴露诱导,而且已经证实巴比妥类药物对此无影响。
Sevoflurane is metabolized to hexafluoroisopropanol by cytochrome P450 2E1 in a reaction that promotes the release of inorganic fluoride and carbon dioxide. Hexafluoroisopropanol is rapidly conjugated with glucuronic acid and eliminated in urine. _In vivo_ metabolism studies suggest that approximately 5% of the sevoflurane dose may be metabolized. In most cases, inorganic fluoride reaches its highest concentration within 2 hours of the end of sevoflurane anesthesia, and returns to baseline levels within 48 hours. Sevoflurane metabolism may be induced by chronic exposure to isoniazid and ethanol, and it has been shown that barbiturates do not affect it.
来源:DrugBank
代谢
氟化醚挥发性麻醉剂的肾毒性和肝毒性是由生物转化为有毒代谢物引起的。代谢也显著影响了一些挥发性麻醉剂的消除药代动力学。尽管有无数的研究探索了动物麻醉剂的代谢,但关于人类挥发性麻醉剂代谢的比较速率或负责去氟化的酶的身份的信息却很少。此次调查的第一个目的是比较人类肝微粒体中氟化醚麻醉剂的代谢。第二个目的是检验细胞色素P450 2E1是人类挥发性麻醉剂去氟化的特定P450同工酶的假设。从人肝中制备微粒体。通过氟化物产生量测量微粒体培养中的麻醉剂代谢。评估P450 2E1在麻醉剂去氟化中的作用涉及三种方法:对于12个人类肝脏的一系列,将微粒体去氟化速率与微粒体P450 2E1含量(通过西方印迹分析测量)相关联,将去氟化速率与使用标记底物(对硝基酚羟基化和氯唑松6-羟基化)的微粒体P450 2E1催化活性相关联,以及通过P450同工酶选择性抑制剂进行化学抑制。在饱和底物浓度下,通过氟化物产生量评估的麻醉剂代谢的顺序是甲氧氟烷 > 七氟烷 > 恩氟烷 > 异氟烷 > 地氟烷 > 0。七氟烷和甲氧氟烷去氟化与抗原性P450 2E1含量显著线性相关(分别为r = 0.98和r = 0.72),但与P450 1A2或P450 3A3/4无关。将麻醉剂去氟化与对硝基酚或氯唑松羟基化进行比较,七氟烷(r = 0.93,r = 0.95)和甲氧氟烷(r = 0.78,r = 0.66)显示出显著相关性。七氟烷去氟化也与已知的由人类P450 2E1代谢的恩氟烷的去氟化高度相关(r = 0.93)。二乙基二硫代氨基甲酸盐,一种选择性P450 2E1抑制剂,产生了浓度依赖性的七氟烷、甲氧氟烷和异氟烷去氟化的抑制。没有其他同工酶选择性抑制剂降低七氟烷的去氟化,而甲氧氟烷去氟化被选择性P450抑制剂呋拉非林(P450 1A2)、磺胺苯唑(P450 2C9/10)和奎尼丁(P450 2D6)抑制,但抑制程度远低于二乙基二硫代氨基甲酸盐。这些结果表明,细胞色素P450 2E1是人类肝微粒体中催化七氟烷去氟化的主要,如果不是唯一的酶。P450 2E1是甲氧氟烷代谢的主要,但非唯一酶,甲氧氟烷的代谢似乎也由P450s 1A2、2C9/10和2D6催化。数据还表明,P450 2E1负责异氟烷代谢的很大一部分。确定P450 2E1是人类主要麻醉剂代谢酶,为临床氟化醚麻醉剂代谢和毒性的机制理解提供了依据。
Renal and hepatic toxicity of the fluorinated ether volatile anesthetics is caused by biotransformation to toxic metabolites. Metabolism also contributes significantly to the elimination pharmacokinetics of some volatile agents. Although innumerable studies have explored anesthetic metabolism in animals, there is little information on human volatile anesthetic metabolism with respect to comparative rates or the identity of the enzymes responsible for defluorination. The first purpose of this investigation was to compare the metabolism of the fluorinated ether anesthetics by human liver microsomes. The second purpose was to test the hypothesis that cytochrome P450 2E1 is the specific P450 isoform responsible for volatile anesthetic defluorination in humans. Microsomes were prepared from human livers. Anesthetic metabolism in microsomal incubations was measured by fluoride production. The strategy for evaluating the role of P450 2E1 in anesthetic defluorination involved three approaches: for a series of 12 human livers, correlation of microsomal defluorination rate with microsomal P450 2E1 content (measured by Western blot analysis), correlation of defluorination rate with microsomal P450 2E1 catalytic activity using marker substrates (para-nitrophenol hydroxylation and chlorzoxazone 6-hydroxylation), and chemical inhibition by P450 isoform-selective inhibitors. The rank order of anesthetic metabolism, assessed by fluoride production at saturating substrate concentrations, was methoxyflurane > sevoflurane > enflurane > isoflurane > desflurane > 0. There was a significant linear correlation of sevoflurane and methoxyflurane defluorination with antigenic P450 2E1 content (r = 0.98 and r = 0.72, respectively), but not with either P450 1A2 or P450 3A3/4. Comparison of anesthetic defluorination with either para-nitrophenol or chlorzoxazone hydroxylation showed a significant correlation for sevoflurane (r = 0.93, r = 0.95) and methoxyflurane (r = 0.78, r = 0.66). Sevoflurane defluorination was also highly correlated with that of enflurane (r = 0.93), which is known to be metabolized by human P450 2E1. Diethyldithiocarbamate, a selective inhibitor of P450 2E1, produced a concentration-dependent inhibition of sevoflurane, methoxyflurane, and isoflurane defluorination. No other isoform-selective inhibitor diminished the defluorination of sevoflurane, whereas methoxyflurane defluorination was inhibited by the selective P450 inhibitors furafylline (P450 1A2), sulfaphenazole (P450 2C9/10), and quinidine (P450 2D6) but to a much lesser extent than by diethyldithiocarbamate. These results demonstrate that cytochrome P450 2E1 is the principal, if not sole human liver microsomal enzyme catalyzing the defluorination of sevoflurane. P450 2E1 is the principal, but not exclusive enzyme responsible for the metabolism of methoxyflurane, which also appears to be catalyzed by P450s 1A2, 2C9/10, and 2D6. The data also suggest that P450 2E1 is responsible for a significant fraction of isoflurane metabolism. Identification of P450 2E1 as the major anesthetic metabolizing enzyme in humans provides a mechanistic understanding of clinical fluorinated ether anesthetic metabolism and toxicity.
来源:Hazardous Substances Data Bank (HSDB)
代谢
七氟烷,美国药典(USP)代谢为六氟异丙醇(HFIP),释放无机氟和二氧化碳。氟离子浓度受麻醉持续时间和七氟烷浓度的 影响。一旦形成,HFIP会迅速与葡萄糖醛酸结合并作为尿液代谢物排出体外。未发现七氟烷的其他代谢途径。在人类中,肾损伤患者的氟离子半衰期延长,但人类临床试验中并未报告与氟离子水平升高相关的毒性。
Sevoflurane, USP is metabolized to hexafluoroisopropanol (HFIP) with release of inorganic fluoride and CO2. Fluoride ion concentrations are influenced by the duration of anesthesia and the concentration of sevoflurane, USP. Once formed, HFIP is rapidly conjugated with glucuronic acid and eliminated as a urinary metabolite. No other metabolic pathways for sevoflurane, USP have been identified. In humans, the fluoride ion half-life was prolonged in patients with renal impairment, but human clinical trials contained no reports of toxicity associated with elevated fluoride ion levels.
来源:Hazardous Substances Data Bank (HSDB)
代谢
细胞色素P450 2E1是七氟醚代谢的主要同种型,慢性接触异烟肼和乙醇可能会诱导这种同种型。这与异氟醚和恩氟醚的代谢相似,而与甲氧氟烷的代谢不同,后者通过多种细胞色素P450同种型代谢。七氟醚的代谢不会被巴比妥类药物诱导。如图5所示,在七氟醚麻醉结束后的2小时内,无机氟化物浓度达到峰值,在大多数情况下(67%),在麻醉后48小时内恢复到基线浓度。七氟醚通过肺部的快速和广泛消除,将可供代谢的麻醉药量降至最低。
Cytochrome P450 2E1 is the principal isoform identified for sevoflurane metabolism and this may be induced by chronic exposure to isoniazid and ethanol. This is similar to the metabolism of isoflurane and enflurane and is distinct from that of methoxyflurane which is metabolized via a variety of cytochrome P450 isoforms. The metabolism of sevoflurane is not inducible by barbiturates. As shown in Figure 5, inorganic fluoride concentrations peak within 2 hours of the end of sevoflurane anesthesia and return to baseline concentrations within 48 hours post-anesthesia in the majority of cases (67%). The rapid and extensive pulmonary elimination of sevoflurane minimizes the amount of anesthetic available for metabolism.
来源:Hazardous Substances Data Bank (HSDB)
代谢
七氟醚通过细胞色素P450 2E1代谢,转化为六氟异丙醇(HFIP),同时释放无机氟和CO2。一旦形成HFIP,它会迅速与葡萄糖醛酸结合,并以尿液代谢物的形式排出体外。目前没有发现七氟醚的其他代谢途径。体内代谢研究表明,大约5%的七氟醚剂量可能会被代谢。
Sevoflurane is metabolized by cytochrome P450 2E1, to hexafluoroisopropanol (HFIP) with release of inorganic fluoride and CO2. Once formed HFIP is rapidly conjugated with glucuronic acid and eliminated as a urinary metabolite. No other metabolic pathways for sevoflurane have been identified. In vivo metabolism studies suggest that approximately 5% of the sevoflurane dose may be metabolized.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
七氟烷通过减少间隙连接通道的开放时间并增加间隙连接通道的关闭时间,从而引起间隙连接电导的降低。七氟烷还通过增加脂质膜的流动性,激活肌浆网中的钙依赖性ATP酶。它似乎还能与ATP合酶的D亚单位和NADH脱氢酶结合,并且还与GABA受体、大电导钙激活钾通道、谷氨酸受体和甘氨酸受体结合。
Sevoflurane induces a reduction in junctional conductance by decreasing gap junction channel opening times and increasing gap junction channel closing times. Sevoflurane also activates calcium dependent ATPase in the sarcoplasmic reticulum by increasing the fluidity of the lipid membrane. It also appears to bind the D subunit of ATP synthase and NADH dehydogenase and also binds to the GABA receptor, the large conductance Ca<sup>2+</sup> activated potassium channel, the glutamate receptor, and the glycine receptor.
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 肝毒性
预期的,术后1到2周内,系列血液检测常显示血清转氨酶水平有轻微短暂的升高。然而,ALT水平超过正常上限10倍的情况非常不寻常,这表明有显著的肝毒性。临床上明显的,由七氟醚引起的严重肝损伤非常罕见,只有零星的案例报告发表。这种损伤的特点是血清转氨酶水平急性升高(5到50倍)以及在手术后的2到21天内出现黄疸。碱性磷酸酶和γ-谷氨酰转肽酶水平通常只有轻微升高。黄疸通常在发热一两天前出现,可能伴有皮疹和嗜酸性粒细胞增多。急性肝损伤可能是自限性的,在4到8周内解决,但可能会很严重,并伴有急性肝衰竭。强烈的风险因素包括之前接触过任何卤化麻醉剂,特别是有卤烷肝炎病史或在使用这些麻醉剂后出现不明原因的发热和皮疹。术后和麻醉后急性肝损伤的鉴别诊断有时是困难的,与七氟醚诱导的肝炎相似的临床表现可能由休克或缺血、败血症、其他特异质药物诱导的肝损伤以及急性病毒或疱疹肝炎引起。
Prospective, serial blood testing often demonstrates minor transient elevations in serum aminotransferase levels in the 1 to 2 weeks after major surgery. Appearance of ALT levels above 10 times the upper limit of normal, however, is distinctly unusual and points to significant hepatotoxicity. Clinically apparent, severe hepatic injury from sevoflurane is very rare, only isolated case reports having been published. The injury is marked by acute elevations in serum aminotransferase levels (5- to 50-fold) and appearance of jaundice within 2 to 21 days of surgery. There are usually minimal increases in alkaline phosphatase and gammaglutamyl transpeptidase levels. Jaundice is usually preceded by a day or two of fever and may be accompanied by rash and eosinophilia. The acute liver injury may be self-limited and resolve within 4 to 8 weeks, but can be severe and associated with acute liver failure. A strong risk factor is previous exposure to any of the halogenated anesthetics and particularly a history of halothane hepatitis or unexplained fever and rash after anesthesia with one of these agents. The differential diagnosis of acute liver injury after surgery and anesthesia is sometimes difficult, and a clinical picture similar to sevoflurane induced hepatitis can be caused by shock or ischemia, sepsis, other idiosyncratic forms of drug induced liver injury and acute viral or herpes hepatitis.
来源:LiverTox
毒理性
  • 致癌物分类
对人类不具有致癌性(未被国际癌症研究机构IARC列名)。
No indication of carcinogenicity to humans (not listed by IARC).
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 在妊娠和哺乳期间的影响
母乳喂养期间使用七氟烷的总结:关于母乳喂养期间使用七氟烷的已发表经验很少。由于七氟烷在母体中的血清半衰期短,且预计不会被婴儿吸收,因此不需要等待期或弃奶。只要母亲从全身麻醉中恢复到足以哺乳的程度,就可以恢复母乳喂养。当手术中使用多种麻醉剂组合时,请遵循手术期间使用的最具问题的药物的建议。使用七氟烷作为组分的剖宫产全身麻醉可能会延迟哺乳的开始。在一项研究中,与那些被禁止哺乳或非哺乳妇女相比,诱导全身麻醉前哺乳的妇女对七氟烷和丙泊酚的需求量有所减少。 对哺乳婴儿的影响:截至修订日期,没有找到相关的已发表信息。 对泌乳和母乳的影响:一项随机研究比较了使用全身麻醉、脊髓麻醉或硬脊膜外麻醉的剖宫产与正常阴道分娩对血清催乳素和催产素的影响以及开始泌乳的时间。全身麻醉使用丙泊酚2 mg/kg和罗库溴铵0.6 mg/kg进行诱导,随后根据需要使用七氟烷和罗库溴铵0.15 mg/kg。分娩后,所有组的患者都接受了1 L盐水中的催产素30国际单位的输注,如果她们没有高血压,则给予0.2 mg的甲基麦角新碱。全身麻醉组在分娩后给予芬太尼1至1.5 mcg/kg。全身麻醉组(n = 21)的术后催乳素水平高于其他组,开始泌乳的平均时间(25小时)也比其他组(10.8至11.8小时)长。未用药的阴道分娩组产后催产素水平高于全身和脊髓麻醉组。 一项回顾性研究比较了土耳其一家医院接受选择性剖宫产分娩的妇女,其中一组接受了布比卡因脊髓麻醉(n = 170),另一组接受了使用丙泊酚诱导、七氟烷维持和分娩后给予芬太尼的全身麻醉(n = 78)。两组在产后1小时和24小时的哺乳率没有差异。然而,在产后6个月,全身麻醉组中仍有67%的妇女在哺乳,而脊髓麻醉组中有81%,这是一个统计学上的显著差异。
◉ Summary of Use during Lactation:There is little published experience with sevoflurane during breastfeeding. Because the serum half-life of sevoflurane in the mother short and the drug is not expected to be absorbed by the infant, no waiting period or discarding of milk is required. Breastfeeding can be resumed as soon as the mother has recovered sufficiently from general anesthesia to nurse. When a combination of anesthetic agents is used for a procedure, follow the recommendations for the most problematic medication used during the procedure. General anesthesia for cesarean section using sevoflurane as a component may delay the onset of lactation. In one study, breastfeeding before general anesthesia induction reduced requirements of sevoflurane and propofol compared to those of nursing mothers whose breastfeeding was withheld or nonnursing women. ◉ Effects in Breastfed Infants:Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk:A randomized study compared the effects of cesarean section using general anesthesia, spinal anesthesia, or epidural anesthesia, to normal vaginal delivery on serum prolactin and oxytocin as well as time to initiation of lactation. General anesthesia was performed using propofol 2 mg/kg and rocuronium 0.6 mg/kg for induction, followed by sevoflurane and rocuronium 0.15 mg/kg as needed. After delivery, patients in all groups received an infusion of oxytocin 30 international units in 1 L of saline, and 0.2 mg of methylergonovine if they were not hypertensive. Fentanyl 1 to 1.5 mcg/kg was administered after delivery to the general anesthesia group. Patients in the general anesthesia group (n = 21) had higher post-procedure prolactin levels and a longer mean time to lactation initiation (25 hours) than in the other groups (10.8 to 11.8 hours). Postpartum oxytocin levels in the nonmedicated vaginal delivery group were higher than in the general and spinal anesthesia groups. A retrospective study of women in a Turkish hospital who underwent elective cesarean section deliveries compared women who received bupivacaine spinal anesthesia (n = 170) to women who received general anesthesia (n = 78) with propofol for induction, sevoflurane for maintenance and fentanyl after delivery. No differences in breastfeeding rates were seen between the groups at 1 hour and 24 hours postpartum. However, at 6 months postpartum, 67% of women in the general anesthesia group were still breastfeeding compared to 81% in the spinal anesthesia group, which was a statistically significant difference.
来源:Drugs and Lactation Database (LactMed)
毒理性
  • 暴露途径
该物质可以通过吸入其蒸汽和摄入进入人体。
The substance can be absorbed into the body by inhalation of its vapour and by ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
吸收、分配和排泄
  • 吸收
七氟醚通过肺部迅速吸收进入血液循环;然而,在血液中的溶解度较低(在37°C时血气分配系数范围为0.63至0.69)。因此,为了诱导麻醉,需要极少量的七氟醚溶解在血液中。
Sevoflurane is rapidly absorbed into circulation through the lungs; however, solubility in the blood is low (blood/gas partition coefficient at 37°C ranges from 0.63 to 0.69). Therefore, a minimal amount of sevoflurane needs to be dissolved in blood in order to induce anesthesia.
来源:DrugBank
吸收、分配和排泄
  • 消除途径
七氟烷的低溶解性使其通过肺部快速排出,其中95%到98%的这种麻醉药被消除。高达3.5%的七氟烷剂量以无机氟化物的形式出现在尿液中,多达50%的氟化物清除是非肾脏的(氟化物被骨骼吸收)。
The low solubility of sevoflurane facilitates its rapid elimination through the lungs, where 95% to 98% of this anesthetic is eliminated. Up to 3.5% of the sevoflurane dose appears in urine as inorganic fluoride, and as much as 50% of fluoride clearance is nonrenal (fluoride taken up into bone).
来源:DrugBank
吸收、分配和排泄
  • 分布容积
接受颌面部手术期间低流量七氟醚麻醉的患者(n=16)的周围分布容积为1634 ml蒸气/kg体重,总体分布容积为1748 ml蒸气/kg体重。
Patients given low-flow sevoflurane anesthesia during maxillofacial surgery (n=16) had a peripheral volume of distribution of 1634 ml<sub>vapour</sub>/kg<sub>bw</sub> and a total volume of distribution of 1748 ml<sub>vapour</sub>/kg<sub>bw</sub>.
来源:DrugBank
吸收、分配和排泄
  • 清除
在给予颌面部手术患者低流量七氟醚麻醉(n=16)的情况下,从中央室到周边室的转运清除率为13.0 ml蒸气/kg体重·分钟。
In patients given low-flow sevoflurane anaesthesia during maxillofacial surgery (n=16), the transport clearance from the central to the peripheral compartment was 13.0 ml<sub>vapour</sub>/kg<sub>bw</sub>⋅min.
来源:DrugBank
吸收、分配和排泄
最多有3.5%的七氟烷剂量以无机氟化物的形式出现在尿液中。关于氟化物的研究表明,多达50%的氟化物清除是非肾性的(通过氟化物被骨骼吸收)。
Up to 3.5% of the sevoflurane dose appears in the urine as inorganic fluoride. Studies on fluoride indicate that up to 50% of fluoride clearance is nonrenal (via fluoride being taken up into bone).
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险品标志:
    Xi
  • 安全说明:
    S26,S36/37/39
  • 危险类别码:
    R36/37/38
  • WGK Germany:
    3
  • 海关编码:
    29091990
  • 危险品运输编号:
    UN 3334
  • RTECS号:
    KO0737000
  • 储存条件:
    冷藏保存

SDS

SDS:388bbba09f7a84992513eeebf9f51cca
查看
氟甲基-1,1,1,3,3,3-六氟异丙基醚 修改号码:5

模块 1. 化学品
产品名称: Fluoromethyl 1,1,1,3,3,3-Hexafluoroisopropyl Ether
修改号码: 5

模块 2. 危险性概述
GHS分类
物理性危害 未分类
健康危害
特异性靶器官毒性 麻醉作用
- 单一接触 [第3级]
环境危害 未分类
GHS标签元素
图标或危害标志
信号词 警告
危险描述
可能会导致嗜睡或头晕
防范说明
[预防] 避免吸入。
只能在室外或通风良好的环境下使用。
[急救措施] 吸入:将受害者移到新鲜空气处,在呼吸舒适的地方保持休息。
若感不适:呼叫解毒中心/医生。
[储存] 存放于通风良好处。保持容器密闭。
存放处须加锁。
[废弃处置] 根据当地政府规定把物品/容器交与工业废弃处理机构。

模块 3. 成分/组成信息
单一物质/混和物 单一物质
化学名(中文名): 氟甲基-1,1,1,3,3,3-六氟异丙基醚
百分比: >98.0%(GC)
CAS编码: 28523-86-6
分子式: C4H3F7O
氟甲基-1,1,1,3,3,3-六氟异丙基醚 修改号码:5

模块 4. 急救措施
吸入: 将受害者移到新鲜空气处,保持呼吸通畅,休息。若感不适立即呼叫解毒中心/医生。
皮肤接触: 立即去除/脱掉所有被污染的衣物。用大量肥皂和水轻轻洗。
若皮肤刺激或发生皮疹:求医/就诊。
眼睛接触: 用水小心清洗几分钟。如果方便,易操作,摘除隐形眼镜。继续清洗。
如果眼睛刺激:求医/就诊。
食入: 若感不适,呼叫解毒中心/医生。漱口。
紧急救助者的防护: 救援者需要穿戴个人防护用品,比如橡胶手套和气密性护目镜。

模块 5. 消防措施
合适的灭火剂: 干粉,泡沫,雾状水,二氧化碳
特殊危险性: 小心,燃烧或高温下可能分解产生毒烟。
特定方法: 从上风处灭火,根据周围环境选择合适的灭火方法。
非相关人员应该撤离至安全地方。
周围一旦着火:如果安全,移去可移动容器。
消防员的特殊防护用具: 灭火时,一定要穿戴个人防护用品。

模块 6. 泄漏应急处理
个人防护措施,防护用具, 使用特殊的个人防护用品(自携式呼吸器)。远离溢出物/泄露处并处在上风处。确保
紧急措施: 足够通风。
泄露区应该用安全带等圈起来,控制非相关人员进入。
环保措施: 防止进入下水道。
控制和清洗的方法和材料: 用合适的吸收剂(如:旧布,干砂,土,锯屑)吸收泄漏物。一旦大量泄漏,筑堤控
制。附着物或收集物应该立即根据合适的法律法规废弃处置。

模块 7. 操作处置与储存
处理
技术措施: 在通风良好处进行处理。穿戴合适的防护用具。防止烟雾产生。处理后彻底清洗双手
和脸。
注意事项: 如果可能,使用封闭系统。如果蒸气或浮质产生,使用通风、局部排气。
操作处置注意事项: 避免接触皮肤、眼睛和衣物。
贮存
储存条件: 保持容器密闭。冷藏储存。
存放处须加锁。
远离不相容的材料比如氧化剂存放。
热敏
包装材料: 依据法律。

模块 8. 接触控制和个体防护
工程控制: 尽可能安装封闭体系或局部排风系统。同时安装淋浴器和洗眼器。
个人防护用品
呼吸系统防护: 半面罩或全面罩呼吸器,自携式呼吸器(SCBA),供气呼吸器等。依据当地和政府法
规,使用通过政府标准的呼吸器。
手部防护: 防渗手套。
眼睛防护: 护目镜。如果情况需要,佩戴面具。
皮肤和身体防护: 防渗防护服。如果情况需要,穿戴防护靴。

模块 9. 理化特性
液体
外形(20°C):
氟甲基-1,1,1,3,3,3-六氟异丙基醚 修改号码:5

模块 9. 理化特性
外观: 透明
颜色: 无色-几乎无色
气味: 无资料
pH: 无数据资料
熔点: 无资料
沸点/沸程 58 °C
闪点: 无资料
爆炸特性
爆炸下限: 无资料
爆炸上限: 无资料
密度: 1.52
溶解度:
[水] 无资料
[其他溶剂] 无资料

模块 10. 稳定性和反应性
化学稳定性: 一般情况下稳定。
危险反应的可能性: 未报道特殊反应性。
须避免接触的物质 氧化剂
危险的分解产物: 一氧化碳, 二氧化碳, 氟化氢

模块 11. 毒理学信息
急性毒性: 无资料
对皮肤腐蚀或刺激: 无资料
对眼睛严重损害或刺激: 无资料
生殖细胞变异原性: 无资料
致癌性:
IARC = 无资料
NTP = 无资料
生殖毒性: 无资料
RTECS 号码: KO0737000

模块 12. 生态学信息
生态毒性:
鱼类: 无资料
甲壳类: 无资料
藻类: 无资料
残留性 / 降解性: 无资料
潜在生物累积 (BCF): 无资料
土壤中移动性
log水分配系数: 无资料
土壤吸收系数 (Koc): 无资料
亨利定律 无资料
constant(PaM3/mol):

模块 13. 废弃处置
如果可能,回收处理。请咨询当地管理部门。废弃处置时遵守国家、地区和当地的所有法规。
氟甲基-1,1,1,3,3,3-六氟异丙基醚 修改号码:5

模块 14. 运输信息
联合国分类: 与联合国分类标准不一致
UN编号: 未列明

模块 15. 法规信息
《危险化学品安全管理条例》(2002年1月26日国务院发布,2011年2月16日修订): 针对危险化学品的安全使用、
生产、储存、运输、装卸等方面均作了相应的规定。


模块16 - 其他信息
N/A

制备方法与用途

七氟烷介绍

简介 七氟烷是一种卤代吸入性全身麻醉剂,主要用于诱导及维持麻醉。它不易燃、不易爆,并且是挥发性液体,在汽化后使用。七氟烷对不锈钢、黄铜、铝、镀镍黄铜、镀铬黄铜以及铜铍均无腐蚀作用。此外,七氟烷无刺激性,并能与乙醇、乙醚、氯仿和苯互溶,水中微溶。

药理作用 七氟烷的最小肺泡内浓度(MAC)在纯氧中为1.7%,在笑气、氧气混合气体(2:1)中为0.66%。其诱导时间比安氟醚和氟烷短,但LC50/MAC比值较大。它无刺激性气味且迅速苏醒,在麻醉过程中容易调节麻醉深度。七氟烷的镇痛作用及肌肉松弛作用与安氟醚、氟烷相似;呼吸抑制作用较氟烷轻;很少引起心律失常;在诱导麻醉期会短暂降低血压,随后逐渐稳定。此外,它还是一种挥发性麻醉剂,在模拟体外循环过程中可抑制人血液中炎性中性粒细胞和粒细胞的活化。

制备 以六氟异丙醇及CH2(OCH3)2为起始原料,加入对甲苯磺酸并室温搅拌。随后加入水和10%NaOH调节pH值至9,分出有机层,用水洗涤后进行蒸馏,得到甲氧基亚甲基六氟异丙醚。再将该产物与KF和发烟硫酸反应,在50℃缓慢升温过程中用含水阱收集蒸汽,进一步洗涤并分馏,从而获得七氟烷产品。此反应产率约为80%,制备流程如下:

生物活性 Sevoflurane (Fluoromethyl) 是 5-HT3 受体的非竞争性抑制剂,可用作低溶解度的吸入式麻醉药。

靶点

Target Value
5-HT3 receptor ()

化学性质 七氟烷为挥发性液体,沸点在58.1—58.2℃/100.1kPa 或者 58.5℃/101.3kPa。其D423值为1.505。

用途 作为吸入麻醉剂,七氟烷的麻醉效果与恩氟烷相似,约为氟烷的一半;诱导时间比恩氟烷和氟烷短,但觉醒时间相近。它适用于全身麻醉。

生产方法 以六氟丙酮为原料,在钯一炭催化下进行氢化反应可得六氟异丙醇。再利用甲醛、氟化氢及硫酸与六氟异丙醇反应即可制备七氟烷。 也可通过先与溴乙酸反应,再用三氟化溴处理获得七氟烷。

类别 有毒物品

毒性分级 低毒

急性毒性

  • 大鼠口服 LD50: 10800 毫克/公斤
  • 小鼠口服 LD50: 18200 毫克/公斤

可燃性危险特性 可燃,燃烧分解产生有毒氟化物烟雾。

储运特性 库房应保持通风、低温和干燥,并与食品添加剂分开存放。

灭火剂 二氧化碳、泡沫、砂土、雾状水。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    七氟烷 为溶剂, 以79%的产率得到2-(氯甲氧基)-1,1,1,3,3,3-六氟丙烷
    参考文献:
    名称:
    Method of preparing monofluoromethyl ethers
    摘要:
    一种制备氟甲基2,2,2-三氟-1-(三氟甲基)乙醚(七氟醚)及结构相关的单氟甲基醚的方法,其中单氯甲基醚前体物与立体位阻的三级胺氢氟化物盐反应。
    公开号:
    US05886239A1
  • 作为产物:
    描述:
    二氯甲基醚 在 BrF3 作用下, 生成 七氟烷
    参考文献:
    名称:
    Method for the preparation of fluoromethyl
    摘要:
    氟甲基-1,1,1,3,3,3-六氟-2-丙基醚的制备是通过溴三氟和甲基-1,1,1,3,3,3-六氯-2-丙基醚或氯甲基-1,1,1,3,3,3-六氯-2-丙基醚反应得到的。具有公式##STR1##(其中x+y=3,a+b=3,Z=H Cl或F)的混合氟氯醚中间体通过与溴三氟反应转化为氟甲基-1,1,1,3,3,3-六氟-2-丙基醚。
    公开号:
    US04874902A1
  • 作为试剂:
    描述:
    四氯化碳 在 cytochrome P540七氟烷还原型辅酶II(NADPH)四钠盐 作用下, 以 various solvent(s) 为溶剂, 反应 0.12h, 生成 氯仿
    参考文献:
    名称:
    Stimulatory effect of anesthetics on dechlorination of carbon tetrachloride in guinea-pig liver microsomes
    摘要:
    Effects of the anesthetics isoflurane, enflurane, halothane and sevoflurane on the dechlorination of carbon tetrachloride to produce chloroform were investigated using guinea pig liver microsomes. Under anaerobic conditions, chloroform is produced from carbon tetrachloride by the microsomes in the presence of NADPH, and chloroform production from 86 mu M carbon tetrachloride was enhanced to 146%, 133%, 123% and 115% by the addition of isoflurane, enflurane, halothane and sevoflurane, respectively. The half-life of oxidized cytochrome P450 which remained during the reduction by the addition of NADPH was shortened to 51%, 54%, 60% and 80% by isoflurane, enflurane, halothane and sevoflurane, respectively, without alteration of NADPH-cytochrome c reductase activity. These anesthetics hastened the onset of the 445 nm absorption band formation which was shown by microsomes with carbon tetrachloride in the presence of NADPH under anaerobic conditions. These results indicate that the anesthetics isoflurane, enflurane, sevoflurane and halothane stimulate the reduction of cytochrome P450 results in the acceleration of the carbon tetrachloride dechlorination. These results may have implications for other type II drugs that are administered during anesthesia.
    DOI:
    10.1016/s0300-483x(96)03480-4
点击查看最新优质反应信息

文献信息

  • Activation of Alkyl C–F Bonds by B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>: Stoichiometric and Catalytic Transformations
    作者:Christopher B. Caputo、Douglas W. Stephan
    DOI:10.1021/om200885c
    日期:2012.1.9
    The Lewis acid B(C6F5)3 is shown to activate a series of alkyl fluorides. In stoichiometric reactions, treatment of sterically demanding phosphines with B(C6F5)3/alkyl fluorides gives phosphonium fluoroborate salts while treatment of B(C6F5)3/alkyl fluorides with the salts [tBu3PX][XB(C6F5)3] (X = H, PhS) gives the alkane and the salt byproduct [tBu3PX][FB(C6F5)3]. These fluoroalkanes are also catalytically
    显示路易斯酸B(C 6 F 5)3活化一系列烷基氟化物。在化学计量反应中,用B(C 6 F 5)3 /烷基氟化物处理空间要求的膦,得到氟硼酸phospho盐,而用盐[ t Bu 3 PX] [XB]处理B(C 6 F 5)3 /烷基氟化物。(C 6 F 5)3 ](X = H,PhS)得到烷烃和盐副产物[ t Bu 3 PX] [FB(C 6 F 5)3]。通过使用B(C 6 F 5)3作为催化剂,通过氟代烷烃与Et 3 SiH的反应,这些氟代烷烃也被催化转化为相应的烷烃。
  • 一种氯甲基六氟异丙醚的制备方法
    申请人:江苏恒瑞医药股份有限公司
    公开号:CN108689808B
    公开(公告)日:2021-11-16
    本发明涉及一种氯甲基六氟异丙醚的制备方法。具体而言,本发明涉及一种氯甲基六氟异丙醚的制备方法,其中反应使用的溶剂包含氯甲基六氟异丙醚。本制备方法引入自身产物作溶剂,不但解决了反应过程中反应体系产生的固化现象,还大大提高了产物的纯度,利于工业化生产。
  • METHODS FOR PREPARING FLUORINATED VINYL ETHERS
    申请人:Huang Chialang Grand
    公开号:US20100267995A1
    公开(公告)日:2010-10-21
    A method for preparing a fluorinated vinyl ether compound comprising reacting a fluorinated ether substrate having (i) a hydrogen atom on a carbon atom that is alpha to an etheric oxygen and (ii) a fluorine atom on a carbon atom that is beta to the etheric oxygen, with an organolithium base to provide a reaction product comprising a fluorinated vinyl ether compound.
    一种制备氟化乙烯醚化合物的方法,包括将一种氟化醚底物与有机锂碱反应,所述氟化醚底物具有(i) 一个氢原子位于与乙醚氧原子相邻的碳原子的α位上,以及(ii) 一个氟原子位于与乙醚氧原子相邻的碳原子的β位上,以提供包含氟化乙烯醚化合物的反应产物。
  • Diisopropylethylamine mono(hydrogen fluoride) for nucleophilic fluorination of sensitive substrates: synthesis of sevoflurane
    作者:Linas V Kudzma、Chialang G Huang、Ralph A Lessor、Leonid A Rozov、Syeda Afrin、Florida Kallashi、Conor McCutcheon、Keith Ramig
    DOI:10.1016/s0022-1139(01)00396-7
    日期:2001.9
    fluoride) (7), is shown to be an effective and selective nucleophilic fluorinating reagent when applied to halogen-exchange reactions of chloromethyl ethers, in particular the conversion of 1,1,1,3,3,3-hexafluoroisopropyl chloromethyl ether (3) to the volatile anesthetic sevoflurane (1,1,1,3,3,3-hexafluoroisopropyl fluoromethyl ether). The amine portion of the reagent does not react with the starting
    二异丙基乙胺单(氟化氢)(8)可以通过向络合物二异丙基乙胺三(氟化氢)(7)中添加两当量的二异丙基乙胺来制备,显示出当应用于卤素-时,是一种有效且选择性的亲核氟化试剂。氯甲基醚的交换反应,特别是1,1,1,3,3,3-六氟异丙基氯甲​​基醚的转化率(3)到挥发性麻醉剂七氟醚(1,1,1,3,3,3-六氟异丙基氟甲基醚)中。试剂的胺部分不与起始原料反应生成麻烦的季铵盐,这是通过向三乙胺三(氟化氢)中加入两当量的三乙胺而形成的物质的情况。这些特定的氯甲基醚底物需要二异丙基乙胺与氟化氢的化学计量比为1:1,以提供有用的反应速率和所需的无溶剂条件下的收率。其他两种络合物,二异丙基乙胺双(氟化氢)和7对将3转化为七氟醚无效。
  • Manufacture of hexafluoroisopropanol
    申请人:SOLVAY SA
    公开号:EP2626341A1
    公开(公告)日:2013-08-14
    Hexafluoroisopropanol (CF3CHOHCF3) is manufactured in two steps from monochloromalonic acid or monochlomalonic acid esters by a reaction with a fluorinating agent, notably SF4, to form CF3CHClCF3 which is hydrolyzed to form CF3CHOHCF3. The hexafluoroisopropanol can be used as such, or, preferably, it is further reacted to form Sevoflurane, an anesthetic. Compounds of the formula CF3-CH(OY)-CF3 wherein Y is OTs, OMe, OTf or OTMS are also described.
    Hexafluoroisopropanol (CF3CHOHCF3)是通过两步法从单氯丙二酸或单氯丙二酸酯制造的,其中第一步是与氟化剂(特别是SF4)反应生成CF3CHClCF3,然后水解生成CF3CHOHCF3。六氟异丙醇可以直接使用,或者更好的是进一步反应形成一种麻醉剂七氟醚。还描述了公式为CF3-CH(OY)-CF3的化合物,其中Y是OTs,OMe,OTf或OTMS。
查看更多