三七皂苷R1来源于五加科植物三七(Panax notoginseng (Burk.) F.H.Chen)的干燥根和根茎,具有散瘀止血、消肿定痛的功效。现代药理研究表明,三七不仅能够延缓衰老、扩张血管、改善微循环,其主要有效成分——三七总皂苷(Panax Notoginseng Saponins, PNS),包括多种单体皂苷,也显示出促进血液循环和改善能量代谢的作用。
药材提取与对照品溶液的配制 药材的提取精密称取过四号筛三七粉末0.5678g,加入甲醇50ml,密闭放置过夜后,在80℃水浴微沸2小时。冷却后用甲醇补足减失的重量,摇匀过滤,即得待测样品。
对照品溶液的制备分别精密称取人参皂苷Rg1、Rb1和三七皂苷R1对照品各适量(分别为14.7mg、13.2mg和8.0mg),置于10ml容量瓶中,用甲醇溶解并稀释至刻度,摇匀。再精密量取上述三种对照品溶液加入流动相制成混合液。
用途 改善认知与学习记忆能力本发明通过实验证明三七皂苷R1(NTR1)可改善APP/PS1转基因阿尔茨海默病(AD)小鼠的认知和学习记忆能力,回复其脑内胆碱能神经元(ChAT)水平,降低丙二醛含量,并提高细胞色素C氧化酶活性。此外,NTR1还能提升β-淀粉样蛋白降解相关酶IDE的表达,从而抑制Aβ积累。
改善微循环及保护心血管作用研究发现NTR1能促进纤维蛋白溶解系统合成,通过对内皮细胞E-选择素和中性粒细胞CD18蛋白表达的抑制作用。此外,在TNF-a介导的静脉内皮细胞功能障碍模型中,NTR1通过抑制ERK激活及NADPH氧化酶介导的ROS生成减轻炎症。
抗炎作用尾静脉注射NTR1可以降低脂多糖(LPS)诱导的小鼠死亡率,并抑制人全血培养液中的TNF-a分泌。最新研究发现,NTR1能通过上调雌激素受体a (ERα)及PI3K/Akt通路减轻心脏功能障碍小鼠模型的心肌炎症反应和细胞凋亡。
其他作用三七皂苷R1还具有一定的抗肿瘤与抗氧化作用。
化学性质来源于五加科(araliaceae)人参属植物的干燥根,用于含量测定、鉴定及药理实验等。
药理药效活血化瘀功效,并据报道有神经保护及抗高血压等作用。
参考资料
图1 三七皂苷R1高效液相色谱图
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
—— | 20(R)-notoginsenoside R2 | 80418-25-3 | C41H70O13 | 770.999 |
三七皂苷R2(S型) | notoginsenoside R2 | 80418-25-3 | C41H70O13 | 770.999 |
人参皂苷 Rg1 | ginsenoside-Rg1 | 22427-39-0 | C42H72O14 | 801.025 |
Glycosylation, which is catalyzed by UDP-glycosyltransferases (UGTs), is an important biological modification for the structural and functional diversity of ginsenosides. In this study, the promiscuous UGT109A1 from Bacillus subtilis was used to synthesize unnatural ginsenosides from natural ginsenosides. UGT109A1 was heterologously expressed in Escherichia coli and then purified by Ni-NTA affinity chromatography. Ginsenosides Re, Rf, Rh1, and R1 were selected as the substrates to produce the corresponding derivatives by the recombinant UGT109A1. The results showed that UGT109A1 could transfer a glucosyl moiety to C3-OH of ginsenosides Re and R1, and C3-OH and C12-OH of ginsenosides Rf and Rh1, respectively, to produce unnatural ginsenosides 3,20-di-O-β-d-glucopyranosyl-6-O-[α-l-rhamnopyrano-(1→2)-β-d-glucopyranosyl]-dammar-24-ene-3β,6α,12β,20S-tetraol (1), 3,20-di-O-β-d-glucopyranosyl-6-O-[β-d-xylopyranosyl-(1→2)-β-d-glucopyranosyl]-dammar-24-ene-3β,6α,12β,20S-tetraol (6), 3-O-β-d-glucopyranosyl-6-O-[β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl]-dammar-24-ene-3β,6α,12β,20S-tetraol (3), 3,12-di-O-β-d-glucopyranosyl-6-O-[β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl]-dammar-24-ene-3β,6α,12β,20S-tetraol (2), 3,6-di-O-β-d-glucopyranosyl-dammar-24-ene-3β,6α,12β,20S-tetraol (5), and 3,6,12-tri-O-β-d-glucopyranosyl-dammar-24-ene-3β,6α,12β,20S-tetraol (4). Among the above products, 1, 2, 3, and 6 are new compounds. The maximal activity of UGT109A1 was achieved at the temperature of 40 °C, in the pH range of 8.0–10.0. The activity of UGT109A1 was considerably enhanced by Mg2+, Mn2+, and Ca2+, but was obviously reduced by Cu2+, Co2+, and Zn2+. The study demonstrated that UGT109A1 was effective in producing a series of unnatural ginsenosides through enzymatic reactions, which could pave a way to generate promising leads for new drug discovery.