帕潘立酮是一种化学物质,是利培酮的主要活性代谢产物,属于非典型抗精神病药物。广泛应用于分子生物学、药理学等科研领域,为苯并异噁唑衍生物,具有多种生物活性。
生物活性Paliperidone作为Risperidone的主要活性代谢物,是一种高效的5-HT2A和D2受体拮抗剂,用于治疗精神分裂症。其体内体外研究显示,它能够显著增加Rb23和DOX在细胞内的累积,并对神经元放电率和攻击行为产生影响。
靶点Target | Value |
---|---|
D2受体 |
Paliperidone在低浓度(10和50 μM)下,能够有效地作用于Aβ(25-35) 和MPP+(+),并仅保护SH-SY5Y免受过氧化氢的损害。此外,它还能显著减少各种压力诱导的细胞减少,并且在最高剂量下增强多巴胺毒性,是唯一一种能增加细胞活性(8.1%)的药物。
体内研究Paliperidone能够恢复大鼠前额叶皮质基底层细胞外的谷氨酸盐水平,防止急性MK-801诱导的细胞外谷氨酸盐增加。与Escitalopram联合给药可恢复NE神经元放电率的抑制和神经元突发放电的百分比,并在有效剂量下以剂量依赖的方式减少咬合和攻击行为。
用途帕潘立酮作为一种活性代谢产物,具有广泛的科研应用价值,作为非典型抗精神病药物利培酮的一部分,其作用机制仍在研究中。
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
利培酮 | Risperidone | 106266-06-2 | C23H27FN4O2 | 410.491 |
帕潘立酮棕榈酸酯 | paliperidone palmitate | 199739-10-1 | C39H57FN4O4 | 664.904 |
—— | 4-((3-(2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)ethyl)-2-methyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-9-yl)oxy)-4-oxobutanoic acid | 1289120-87-1 | C27H31FN4O6 | 526.565 |
—— | 3-[2-[4-(6-Fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl]-2-methyl-9-(oxan-2-yloxy)-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-4-one | 1109182-35-5 | C28H35FN4O4 | 510.609 |
9-氧代利司哌酮 | 3-[2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidin-1-yl]ethyl]-9-oxo-2-methyl-6,7,8,9-tetrahydro-4H-pyrido-[1,2-a]pyrimidin-4-one | 1189516-65-1 | C23H25FN4O3 | 424.475 |
—— | 3-(2-{4-((2,4-difluorophenyl)hydroxyiminomethyl)piperidin-1-yl}ethyl)-9-hydroxy-2-methyl-6,7,8,9-tetrahydro-pyrido[1,2-a]pyrimidin-4-one | 1141761-80-9 | C23H28F2N4O3 | 446.497 |
3-(2-氯乙基)-6,7,8,9-四氢-9-羟基-2-甲基-4H-吡啶并[1,2-a]嘧啶-4-酮 | 3-(2-chloroethyl)-9-hydroxy-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one | 130049-82-0 | C11H15ClN2O2 | 242.705 |
帕潘立酮杂质7 | 3-(2-chloroethyl)-6,7,8,9-tetrahydro-2-methyl-9-hydroxy-4H-pyrido[1,2-a]pyrimidine-4-one palmitate ester | 1415488-05-9 | C27H45ClN2O3 | 481.119 |
帕潘立酮杂质 | 3-[2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidin-1-yl]ethyl]-9-hydroxy-2-methyl-4H-pyrido-[1,2-a]pyrimidin-4-one | 766485-15-8 | C23H23FN4O3 | 422.459 |
—— | 3-{2-[4-(6-fluoro-benzoisooxazol-3-yl)-piperidin-1-yl]-ethyl}-9-benzyloxy-2-methyl-pyrido[1,2-a]pyrimidin-4-one | 1056034-13-9 | C30H29FN4O3 | 512.584 |
帕潘立酮杂质 | 3-(2-chloroethyl)-9-oxo-2-methyl-6,7,8,9-tetrahydro-4H-pyrido-[1,2-a]pyrimidin-4-one | 1138463-56-5 | C11H13ClN2O2 | 240.689 |
—— | 3-(2-chloroethyl)-6,7,8,9,-tetrahydro-9hydroxy-4H-pyrido[1,2-a]pyrimidin-4-one | —— | C10H13ClN2O2 | 228.678 |
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
—— | 9-(3-aminopropoxy)-3-(2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)ethyl)-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one | 1570061-79-8 | C26H34FN5O3 | 483.586 |
—— | 6-((3-(2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)ethyl)-2-methyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-9-yl)oxy)hexanoic acid | 1570061-81-2 | C29H37FN4O5 | 540.635 |
—— | N-(3-((3-(2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)ethyl)-2-methyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-9-yl)oxy)propyl)pivalamide | 1570061-78-7 | C31H42FN5O4 | 567.704 |
帕潘立酮棕榈酸酯 | paliperidone palmitate | 199739-10-1 | C39H57FN4O4 | 664.904 |
十八酸3-[2-[4-(6-氟-1,2-苯并恶唑-3-基)-1-哌啶基]乙基]-6,7,8,9-四氢-2-甲基-4-氧代-4H-吡啶并[1,2-a]嘧啶-9-酯 | paliperidone stearate | 1172995-13-9 | C41H61FN4O4 | 692.958 |
帕利哌酮十四酸酯 | paliperidone myristate | 1172995-11-7 | C37H53FN4O4 | 636.851 |
—— | 3-(2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)ethyl)-2-methyl-9-((6-oxo-6-(piperazin-1-yl)hexyl)oxy)-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one | 1570061-83-4 | C33H45FN6O4 | 608.757 |
—— | 4-((3-(2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)ethyl)-2-methyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-9-yl)oxy)-4-oxobutanoic acid | 1289120-87-1 | C27H31FN4O6 | 526.565 |
—— | paliperidone oleate | 1416127-88-2 | C41H59FN4O4 | 690.942 |
—— | 4-(4-(6-((3-(2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)ethyl)-2-methyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-9-yl)oxy)hexanoyl)piperazin-1-yl)-4-oxobutanoic acid | 1570061-84-5 | C37H49FN6O7 | 708.83 |
—— | 3-(2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)ethyl)-2-methyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-9-yl 3-pivalamidopropanoate | 1570061-76-5 | C31H40FN5O5 | 581.688 |
—— | 3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-N-(3-((3-(2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)ethyl)-2-methyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-9-yl)oxy)propyl)propanamide | 1570061-80-1 | C33H39FN6O6 | 634.708 |
—— | tert-butyl 4-(6-((3-(2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)ethyl)-2-methyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-9-yl)oxy)hexanoyl)piperazine-1-carboxylate | 1570061-82-3 | C38H53FN6O6 | 708.874 |
—— | 3-(2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)ethyl)-2-methyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-9-yl 3-(3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)propanamido)propanoate | 1570061-77-6 | C33H37FN6O7 | 648.691 |
9-氧代利司哌酮 | 3-[2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidin-1-yl]ethyl]-9-oxo-2-methyl-6,7,8,9-tetrahydro-4H-pyrido-[1,2-a]pyrimidin-4-one | 1189516-65-1 | C23H25FN4O3 | 424.475 |
—— | 9-Amino-3-[2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl]-2-methyl-6,7-dihydropyrido[1,2-a]pyrimidin-4-one | 1301724-93-5 | C23H26FN5O2 | 423.49 |
帕利哌酮开环杂质 | 3-{2-[4-(4-fluoro-2-hydroxybenzoyl)piperidin-1-yl]ethyl}-9-hydroxy-2-methyl-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-4-one | 152542-03-5 | C23H28FN3O4 | 429.491 |
3-乙基-6,7,8,9-四氢-9-羟基-2-甲基-4H-吡啶并[1,2-a]嘧啶-4-酮 | 3-ethyl-9-hydroxy-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one | 849903-79-3 | C11H16N2O2 | 208.26 |
—— | 3-(2-chloroethyl)-6,7,8,9,-tetrahydro-9hydroxy-4H-pyrido[1,2-a]pyrimidin-4-one | —— | C10H13ClN2O2 | 228.678 |
Gaining insight into the pharmacology of ligand engagement with G-protein coupled receptors (GPCRs) under biologically relevant conditions is vital to both drug discovery and basic research. NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) monitoring competitive binding between fluorescent tracers and unmodified test compounds has emerged as a robust and sensitive method to quantify ligand engagement with specific GPCRs genetically fused to NanoLuc luciferase or the luminogenic HiBiT peptide. However, development of fluorescent tracers is often challenging and remains the principal bottleneck for this approach. One way to alleviate the burden of developing a specific tracer for each receptor is using promiscuous tracers, which is made possible by the intrinsic specificity of BRET. Here, we devised an integrated tracer discovery workflow that couples machine learning-guided in silico screening for scaffolds displaying promiscuous binding to GPCRs with a blend of synthetic strategies to rapidly generate multiple tracer candidates. Subsequently, these candidates were evaluated for binding in a NanoBRET ligand-engagement screen across a library of HiBiT-tagged GPCRs. Employing this workflow, we generated several promiscuous fluorescent tracers that can effectively engage multiple GPCRs, demonstrating the efficiency of this approach. We believe that this workflow has the potential to accelerate discovery of NanoBRET fluorescent tracers for GPCRs and other target classes.