Regorafenib is metabolized by CYP3A4 and UGT1A9. The main circulating metabolites of regorafenib measured at steady-state in human plasma are M-2 (N-oxide) and M-5 (N-oxide and N-desmethyl), both of them having similar in vitro pharmacological activity and steady-state concentrations as regorafenib. M-2 and M-5 are highly protein bound (99.8% and 99.95%, respectively). Regorafenib is an inhibitor of P-glycoprotein, while its active metabolites M-2 (N-oxide) and M-5 (N-oxide and N-desmethyl) are substrates of P-glycoprotein.
In large clinical trials of regorafenib, elevations in serum aminotransferase levels were common, occurring in 39% to 45% of patients, and were greater than 5 times the upper limit of normal (ULN) in 3% to 6%. In addition, there have been several reports of clinically apparent liver injury arising during regorafenib therapy which was often severe and occasionally fatal, estimated to occur in 0.3% of treated subjects. For these reasons, routine monitoring of liver enzymes is recommended. Regorafenib induced liver injury can present in several different patterns or phenotypes. Some patients present within a few days of starting regorafenib with acute hepatic necrosis, high levels of serum aminotransferase and lactic dehydrogenase with mild jaundice, but prolongation of INR and signs of hepatic failure. The injury can be severe but is generally self-limited and recovery is rapid and complete. Other patients present with an acute viral hepatitis like pattern, hepatocelllar (or mixed) serum enzyme elevations and jaundice that can be prolonged and has been fatal in several instances. Autoimmune and immunoallergic features are uncommon. In addition, rare instances of regorafenib associated liver injury have presented with a sinusoidal obstruction-like syndrome or pseudocirrhosis, with marked hepatic nodularity and ascites that eventually improves or resolves. Finally, regorafenib, like other multi-kinase inhibitors [sunitinib, imatinib, sorafenib], has also been associated with episodes of hyperammonemic coma generally arising within a few days or weeks of starting and with rapid reversal upon stopping treatment.
◉ Summary of Use during Lactation:No information is available on the clinical use of regorafenib during breastfeeding. Because regorafenib is 99.5% bound to plasma proteins, the amount in milk is likely to be low. However, one of its metabolites has a half-life of up to 70 hours, and might accumulate in the infant. The manufacturer recommends that breastfeeding be discontinued during regorafenib therapy and for 2 weeks after the final dose.
◉ Effects in Breastfed Infants:Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk:Relevant published information was not found as of the revision date.
Approximately 71% of a radiolabeled dose was excreted in feces (47% as parent compound, 24% as metabolites) and 19% of the dose was excreted in urine (17% as glucuronides) within 12 days after administration of a radiolabeled oral solution at a dose of 120 mg.
Compounds and Their Use for Treatment of Amyloid Beta-Related Diseases
申请人:MACSÁRI István
公开号:US20120122843A1
公开(公告)日:2012-05-17
The present invention relates to novel compounds of formula (I) and pharmaceutically acceptable salts thereof, pharmaceutical compositions comprising said compounds, processes for making said compounds, and their use as medicaments for treatment and/or prevention of Aβ-related diseases.
developed methodology rendered the use of carboxylic acids as a direct surrogate of primary amines, for the synthesis of primary ureas, secondary/tertiaryureas, O/S-carbamates, benzoyl ureas, amides, and N-formyls, exploiting the Curtius reaction. This approach has a potential to provide a diversified library of N-containing compounds, starting from a single carboxylic acid, based on the selection of the
chance treatments for colorectal cancer. While various analogues have already been prepared, ferrocenic derivatives have never been evaluated. In this study, we prepared various ferrocene-containing derivatives of regorafenib and recorded their biological activity in kinase and cellular assays. This led to the identification of a squaramide derivative which shows a good cellular activity and three
PREPARATION METHOD OF FLUORO-SUBSTITUTED DEUTERATED DIPHENYLUREA
申请人:Feng Weidong
公开号:US20130060043A1
公开(公告)日:2013-03-07
A fluoro-substituted deuterated diphenylurea compound, especially 4-(4-(3-(4-chloro-3-(trifluoromethyl)phenyl)ureido)-3-fluorophenoxy)-2-(N-(methyl-d3))picolinamide, preparing method and use for treating or preventing tumor and relative diseases thereof.